
1 May 1998 Delphi Informant

May 1998, Volume 4, Number 5

Cover Art By: Tom McKeith

ON THE COVER
5 HTML Help � Ron Loewy
Mr Loewy introduces HTML Help — a collection of software tools, tech-
nologies, and specifications defined by Microsoft as a replacement for
Windows’ aging online help system. He then goes one step further, and
demonstrates its use from Delphi.

10 What’s This? � David Hemphill
You know what it is — that little question-mark button. You click on it
first, then click on what you’re interested in to get help. You never gave
it much thought, however, until it showed up as a client’s specification.
Fortunately, when asked “What’s this?” Mr Hemphill replies: “Delphi!”

FEATURES
15 Visual Programming
Setting Limits: Part II � Gary Warren King
Continuing his discussion of form-size control, Mr King shares a compo-
nent that intercepts messages intended for the form, and modifies them
to alter the behavior of the form.

21 OP Tech
Delphi Import/Export: Part I � Bill Todd
Mr Todd begins a two-article series. This month’s topic is getting data
into (or out of) delimited or fixed-length ASCII text files, and out of (or
into) a database — or was it the other way around?

28 Columns & Rows
AS/400 Shortcut � Bradley MacDonald
As it turns out, there are several ways to run commands or programs on
an AS/400 from Delphi, without using an RPC call. Mr MacDonald
examines one — the Query component.

31 In Development
Any Port in a Storm � Alan C. Moore, Ph.D.
Do you need to move an application from 16-bit Windows to 32-bit
Windows? Or are you developing a program that needs to compile
into a 16- or 32-bit version? Dr Moore explains.

34 Algorithms
Linked Lists � Rod Stephens
Supplying Delphi implementations of the extremely flexible data
structures known as linked lists, Mr Stephens demonstrates what to
do when the data is too dynamic for arrays.

REVIEWS
38 HelpScribble

Product Review by Alan C. Moore, Ph.D.

41 DotHLP
Product Review by Cary Jensen, Ph.D.

43 WinHelp Office 5.0
Product Review by Gary Entsminger

DEPARTMENTS
2 Delphi Tools
4 Newsline
46 From the Trenches by Dan Miser
47 File | New by Alan C. Moore, Ph.D.

HTML, What’s This? and More

2 May 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Innoview Releases Multilanguage for VCL 3.0

Innoview Data Technologies

Ltd. announced
Multilanguage for VCL 3.0, a
collection of components and
tools for Delphi and
C++Builder that globalizes
applications by making them
multilingual. A multilingual
application can handle any
number of different languages,
and can switch from one lan-
guage to another on-the-fly.

Multilanguage for VCL 3.0
is a localization and globaliza-
tion solution for corporate
developers, ISVs, VARs, and
system integrators that delivers
large-scale applications inter-
nationally. The enhanced sup-
port for three different types of
character sets, including bi-
directional (Arabic and
Hebrew) and double byte (Far
East) character sets, ensures
compatibility with all
Windows language editions.
Digital Metaphors Ships
Version 3.0 offers enhance-
ments in performance, com-
patibility, and support for
standards, while keeping the
core technology intact.
Multilanguage for VCL 3.0
provides Fast-and-Easy
Translation Technology and
the Dictionary Editor utility,
which works together with the
software components compati-
ble with Delphi and
C++Builder environments.
Piparti 3.0

Torry’s Delphi Pages CD-
At press time, Multilanguage
for VCL 3.0 was scheduled for
release in March, 1998.

Innoview Data Technologies Ltd.
Price: US$290 and US$580 for
Standard Edition without and with
source code, respectively; US$790 and
US$1,580 for Professional Edition with-
out and with source code, respectively.
Phone: +358-9-4762 0550
Web Site: http://www.innoview-
data.com
ROM Edition Released
Digital Metaphors
announced the release of
Piparti 3.0, an update to
the company’s native Delphi
reporting tool. Piparti 3.0
provides an extensible plat-
form for advanced reporting
requirements in four areas:
report layout and design,
data access, output device
support, and dialog cus-
tomization.

This new release offers new
features for designing com-
plex reports without code,
including free-form subre-
ports for handling multiple
master/detail relationships,
multiple section reports, and
side-by-side presentation of
data; regions, containers for
grouping report components
(similar to Delphi’s TPanel);
and precise layout position-
ing capabilities.

In addition, data access
and report output are open
and extensible via
DataPipeline and Device.
Piparti 3.0 ships with a
BDEPipeline that supports
standard Delphi data access
and a TextPipeline for
accessing ASCII data.

Piparti 3.0 also includes a
forms API, which allows for
the replacement of any of
Piparti’s built-in dialogs
without changing the
source.
Piparti 3.0 and Piparti Pro
3.0 include versions for
Delphi 1, 2, and 3, and full
source code.

Digital Metaphors
Price: Piparti 3.0, US$249; Piparti Pro
3.0, US$495.
Phone: (214) 800-8760
Web Site: http://www.digital-
metaphors.com
The second edition of
Torry’s Delphi Pages, a col-
lection of components and
tools for Delphi developers,
was released and is available
on CD-ROM. The new
release offers more than
1,300 components for
Delphi 1.x, 2.x, 3.0, and
C++Builder, including
ToolBar97, XToolBar,
TStatusLine, and
TExplorerButton. It
includes code samples,
Delphi and C++Builder
programming tools, such as
Quick Glyph and
HelpScribble, and freeware
and shareware applications,
such as eAuthor/Site,
EditPad, and HTML Buddy.

The CD-ROM also con-
tains Delphi Knowledge Base
by Marko Tietz, Delphi-
News by N. Hartkamp, and
The Unofficial Newsletter of
Delphi Users by Robert
Vivrette.

Torry’s Delphi Pages
Price: US$36
Web Site: http://torry.magnitka.ru

http://www.innoview.com
http://www.innoview.com
http://www.digital-metaphors.com
http://www.digital-metaphors.com
http://torry.magnitka.ru

3 May 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

PowerBBS Computing Releases Delphi2Java/VB2Java Toolkit

PowerBBS Computing

released the
Delphi2Java/VB2Java
Professional Toolkit, which
includes the tools to convert
Delphi and Visual Basic
applications to Java.

The professional version
adds support for JDK 1.1,
allowing developers to
choose from JDK 1.02 or
1.1 Java output. The
Professional Toolkit also
includes complete Java
source code.

The Professional Toolkit
offers the JavaSizer, which
improves a program’s inter-
face by shrinking or stretch-
ing the controls and fonts
on Java screens according to
the client’s resolution capa-
bilities.

The Professional Toolkit
can also center the form on
InterBase Releases InterB
initialization.
The Professional Toolkit

provides customizable Java
comments to facilitate
future Java development.
Additionally, it will transfer
comments in original
source code to the Java
source file.

In addition, the
Professional Toolkit includes
ase 5.0

devSoft Announces New I
five free consulting hours,
which may be used to assist
developers during the con-
version process, including
customizing the actual con-
version software.

PowerBBS Computing
Price: US$799
Phone: (516) 938-0506
Web Site: http://www.javadelphi.com
P*Works! Package
InterBase Software Corp.
announced the availability
of InterBase 5.0, an
embedded database man-
agement system that inte-
grates with a variety of
development tools, includ-
ing Delphi, C++Builder,
IntraBuilder, and Visual
dBASE.

InterBase 5.0 offers a
multi-client, multi-threaded
architecture that eliminates
bottlenecks and reduces the
overhead required for multi-
ple process tasks.

InterBase 5.0 includes
InterClient, an all-Java
JDBC driver that allows
high-performance connec-
tivity and easier deploy-
ment, reducing deployment
and life cycle costs to Java
client/server developers.

InterBase allows any client
platform to communicate
transparently with any server
platform that the product
supports. It also offers “Year
2000” correctness, stored and
select procedures, and server-
side triggers.

InterBase Software Corp.
Price: US$40 per copy (units of
100); US$200 for server; US$150 per
additional user. Volume discounts are
available.
Phone: (888) 345-2015
Web Site: http://www.interbase.com
devSoft Inc. announced a
version upgrade of the
IP*Works! package, a
TCP/IP developer’s toolkit
for Microsoft Windows and
Windows 95/NT.

The toolkit provides
Internet and intranet devel-
opment components for
Delphi, C++Builder, Visual
Basic, Visual C++, and
other environments.

The new version offers
more flexibility, more com-
ponents, and more sample
applications.

New features include a
new NetDial control for
managing dialup connec-
tions, the Multicast compo-
nent, support for custom
commands in the
FTP/SMTP/POP/NNTP
components, better firewall
support for the FTP con-
trol, and support for resum-
ing interrupted FTP down-
loads/uploads.

The version upgrades are
offered for all editions of
IP*Works!, including
IP*Works! Delphi Edition,
IP*Works! ActiveX Edition,
IP*Works! C++ Edition,
and IP*Works! C++Builder
Edition, which are now at
Version 2.0. IP*Works!
Visual Basic Edition is now
at Version 3.0.

devSoft Inc.
Price: US$195; owners of previous
versions of IP*Works! may upgrade for
US$95.
Phone: (919) 493-5805
Web Site: http://www.dev-soft.com
Dunstan Thomas Releases
IB*Doc 1.1

Dunstan Thomas Ltd. released
IB*Doc 1.1, a utility that analyzes

and generates reports from
InterBase databases. The prod-

uct creates a number of different
reports that can be used to pro-

vide a hard copy of the
database for disaster recovery or

to document an existing data-
base for further analysis or
development. These reports

include Domain Report,
Exception Report, Generator

Report, Stored Procedures (both
list and detail), Tables (both list
and detail), Triggers (both list
and detail), UDFs, Users, and

Views (both list and detail).
IB*Doc 1.1 is available free of

charge and can be downloaded
from the Dunstan Thomas

InterBase site at
http://www.interbase.dthomas.-

co.uk/files/ibdoc.zip.

http://www.javadelphi.com
http://www.interbase.com
http://www.dev-soft.com
http://www.interbase.dthomas.co.uk/
http://www.interbase.dthomas.co.uk/

4 May 1998 Delphi Informant

News
L I N E

May 1998

CNET Names JBuilder One of Ten Best Computer Products of 1997

Borland Spins Off US Channel Sales and Marketing
Scotts Valley, CA — Borland’s
JBuilder family of Java devel-
opment tools has been named
one of the ten best new com-
puter products of 1997 by
CNET. In a survey in
ComputerWorld, JBuilder was
named the second-best corpo-
rate application development
tool (behind Borland’s Delphi
Client/Server Suite) in
terms of value and return
on investment.

JBuilder also received other
Borland Reports Fiscal Re
awards and accolades, includ-
ing the Java Developers Journal
World Class Award,
developer.com’s Users’ Choice
sults

Borland Unveils Busines
Award, 1997 Best of Comdex
finalist, Windows magazine’s
Recommended WinList, and
others.
Scotts Valley, CA —
Borland announced that it
has spun off its US channel
sales and marketing organi-
zation as an independent
company. The new compa-
ny, Frontline Now!, will rep-
resent and market Borland’s
development tools, includ-
ing Delphi, C++Builder, and
JBuilder, to distributors and
resellers in Borland’s US
sales channel.

Over the past nine
months, Borland has been
transitioning its sales orga-
nization to focus on direct
selling of client/server and
enterprise products to large
corporations. As a result,
Borland generates approxi-
mately 50 percent of its
revenue from these prod-
ucts.

Frontline Now! will estab-
lish relationships with PC
software and hardware ven-
dors offering business appli-
cations, productivity, and
utility products, and will
provide a complete turn-key
channel marketing and sales
solution. Services include
distributor, retail, VAR, cat-
alog and corporate reseller
sales and account manage-
ment, and development and
implementation of compre-
hensive custom channel
marketing programs.
s Solutions Program
Scotts Valley, CA — Borland
announced results for its fiscal
year 1998 third quarter and
nine months ending
December 31, 1997. For the
quarter, net revenues were
US$43,015,000 (compared
with US$36,756,000 for the
third quarter of the previous
fiscal year), an increase of 17
percent. Net revenues for the
nine months ending
December 31, 1997 were
US$127,485,000 (compared
with net revenues of
US$114,208,000 for the nine
months ending December 31,
1996), a 12 percent increase.

Net income of
US$2,826,000 for the third
quarter resulted in basic and
diluted earnings per share of
US$0.07 and US$0.06,
respectively. Borland reported
a net loss of US$29,371,000,
or US$0.81 per share, for the
same quarter a year ago.

For the nine months ending
December 31, 1997, net
income was US$4,423,000,
resulting in basic and diluted
earnings per share of US$0.10.
For the nine months ending
December 31, 1996, net loss
was US$65,490,000, or
US$1.80 per share.

On January 1, 1998, Borland
went to a calendar fiscal year,
versus a fiscal year beginning
April 1, making 1998 a three-
quarter fiscal year.
During the third quarter of
fiscal year 1998, Borland
released JBuilder Client/Server
Suite, Delphi Enterprise,
Visual dBASE 7 for Windows
95 & NT, Delphi/400
Client/Server Suite for IBM
AS/400 developers, and
InterBase 5.0. In this period,
revenues from client/server,
enterprise, and Internet prod-
ucts made up 56 percent of
total net revenues (compared
with 37 percent during the
same period in fiscal year
1997). For the first nine
months of fiscal year 1998,
these products made up 53
percent of total net revenues
(compared with 36 percent
during the same period in fis-
cal year 1997).
Scotts Valley, CA — As part of
its initiative to help corpora-
tions build, deploy, and man-
age its distributed corporate
Information Network applica-
tions, Borland unveiled the
Business Solutions Program
(BSP), a comprehensive pro-
gram for developers/system
integrators, commercial appli-
cation developers, training
partners, and tool and compo-
nent builders. The program
applies to US partners only,
with the exception of the pro-
gram for tool and component
builders, which is available to
partners worldwide.
BSP puts all of Borland’s US

partner activities under one
program and is intended to
support the full range of
Borland’s products, including
Delphi, JBuilder, C++Builder,
IntraBuilder, InterBase,
MIDAS, and Entera. BSP’s
specialized programs are
designed for partners of vari-
ous sizes. Detailed informa-
tion on the benefits and spe-
cific qualifications of each of
the programs can be found at
http://www.borland.com/-
programs/bsp/.

http://www.borland.com/programs/bsp/
http://www.borland.com/programs/bsp/

5 May 1998 Delphi Informant

On the Cover
Delphi 3 / HTML Help

By Ron Loewy
HTML Help
The New Online Help Standard

HTML Help is a collection of software tools, technologies, and specifications
defined by Microsoft as a replacement for Windows’ aging online help sys-

tem. HTML Help is based on HTML — the undisputed standard for hypertext docu-
ment delivery. It’s built on top of Microsoft’s HTML layout technology, and pro-
vides most of WinHelp’s desired features — without many of its shortcomings.
Windows Help (WinHelp) became a popular
online help and hypertext delivery format
with the introduction of Windows 3.0.
WinHelp offered a uniform operating-system-
supported method of delivering large
amounts of content with rich text layout and
graphic support. The move to Windows 3.1,
Windows 95, and Windows NT was accom-
panied by enhancements to the WinHelp
viewer and compiler. New features such as
table of contents and enhanced search capa-
bilities were introduced. These features pro-
vided authors and developers with ways to
create better online help with more function-
ality and an easier-to-use interface.

Despite these advancements, WinHelp’s roots
in the 16-bit world of Windows 3.0, its
reliance on a proprietary, undocumented file
format (.HLP files), and Microsoft Word-
specific source format (.RTF files) were a
constant cause of frustration to online help
authors, developers, and, therefore, users.

In February 1996, Microsoft announced an
initiative to redesign the standard WinHelp
delivery mechanism around the increasingly
popular HTML format. This allowed the
Microsoft online help development team to
start the online engine design from scratch,
and deliver the many enhancements fre-
quently requested by the authoring and
development communities. The developers’
goals were to offer WinHelp’s traditional
strong points — compressed files, multi-
media support, rich text layout, and fast
information retrieval and display — with
the latest HTML technology available from
Microsoft.

HTML Help Architecture
HTML Help is based on a collection of com-
ponents built into Microsoft’s Internet
Explorer Web browser (and future Microsoft
operating systems, such as Windows 98 and
NT 5.0). The Viewer is based on the HTML
layout engine used by Internet Explorer (IE).
This allows HTML Help to offer support for
the latest HTML technology, including
scripting, Java, Internet connectivity,
Dynamic HTML, and ActiveX support.

HTML Help offers several extensions to the
HTML layout engine, including support for
an interactive table of contents, keyword
index, and full text search. The extensions
are provided as an ActiveX component.
Some of the extensions (e.g. table of con-
tents and keywords) are also accessible using
a Java applet.

On the Cover

vs. WinHelp.
HTML Help introduces
a new file format: com-
pile HTML (or CHM)
files. These files use
structured storage,
accessible via standard
COM interfaces opti-
mized for the retrieval of
multimedia information
from large collections of
files. A large online help
file that compresses
many HTML files into one CHM file can be orders of magni-
tude smaller in size than the individual files. When you add the
fact that individual files take a lot of space on the hard disk
under the standard FAT system — even if their physical size is
small — the use of CHM files becomes more attractive.

What HTML Help Offers Developers
HTML Help offers an interface similar to the old WinHelp
API function. This makes the conversion process from using
WinHelp as the application’s online help delivery mechanism
to the new HTML Help format easy. The new HtmlHelp
function takes the same number of arguments, and offers
commands similar to those used by WinHelp.

In addition to the old method of a popup help window that
appears over the application’s window, HTML Help offers
the ability to display multiple help windows by different
applications simultaneously, and the ability to embed the
help window in the application’s window. In the near
future, I believe we’ll see help windows embedded in an
application’s own windows and dialog boxes that offer up-
to-the-minute help based on the user’s actions.

Windows Help offered a poorly documented way to create
extensions to the WinHelp display engine. These extensions were
written in proprietary DLLs, and suffered from limited access to
the layout engine and the event model of the online help.
HTML Help — being an Internet Explorer layout engine client
— can be expanded using ActiveX controls, Java applets, and
other standard methods popularized on the Web. Developers’
capabilities of tailoring the help display and delivery by offering
custom functionality has been expanded significantly.

HTML Help vs. WinHelp: A Quick Look at the Differences
While the HtmlHelp API function call is modeled after the
WinHelp function call, HTML Help offers several important
differences. One important difference is that HTML Help
windows are owned by the calling application, and are not a
separate process (see Figure 1). Because of this difference,
multiple help windows from different applications can be
active at the same time. Help windows are also automatical-
ly destroyed when the calling application terminates.

Another major difference is that HTML Help windows can
now be hosted in the calling application’s windows. These
windows can also notify the owner window of events, allow-

Figure 1: The architecture: HTML Help
6 May 1998 Delphi Informant
ing for a new breed of smart, integrated help in applications.
Applications using HTML Help have complete control of the
HTML Help windows, including the ability to obtain their
handle and even create them in code, on-the-fly.

HTML Help doesn’t offer the WinHelp popup windows. If
you need fast popup windows that can include graphics and
rich text, you might be better off with WinHelp. HTML
Help does, however, offer fast text-based popups most suit-
able for “What’s This?” help.

Authoring HTML Help Files
What goes into an HTML Help file? An HTML Help file is
a collection of compiled, compressed files stored in a file that
uses the CHM extension. The CHM file includes the com-
pressed files in an internal directory structure. You can think
of a CHM file as a file system in a file.

The obvious content of the CHM file are the individual
HTML files that make up the help document. Every topic
that’s referenced in the help document needs to be a part of
the CHM file. Topics referenced via a complete URL —
instead of a relative link — are the exception to this rule.

Many help topics use graphics and multimedia elements (audio,
video, etc.). These elements should be part of the CHM file
(unless they’re referenced via a complete URL). You might be
afraid the task of “compiling” all the media and graphic files
used by the help topics into the CHM file is complicated and
time consuming. Fortunately, the HTML Help compiler is
“smart” enough to parse the HTML files as they’re being com-
pressed, and to automatically pull the referenced media and
graphic files into the CHM archive.

A good help system exposes the information enclosed in it, and
allows the user to access this information easily. Unfortunately,
standard HTML doesn’t offer the table of contents and index
that are taken for granted by book readers, and that have been
available in help files since WinHelp 4.0. HTML Help offers a
standard (based on the proposed Web Collections specification)
way to define table of contents (TOC) and index files. These
files need to be included in the CHM file as well.

Online help is frequently used by applications to provide
context sensitive help about the application. The application
designer might want specific windows that will host the help

Figure 2: An example of tri-pane HTML Help.

On the Cover
content. HTML Help offers a way to define “help win-
dows,” and the definition needs to be part of the CHM file
as well. In addition to the modules mentioned, other files —
such as style sheet files, and other support media and Web-
related files — can be incorporated into the CHM archive.

Topic Files
Topics in the help document are defined in standard
HTML files. Generally speaking, everything you can put in
an HTML file prepared for the Web can go into an HTML
file prepared for your help document. The following points
should be considered:

Relative links will be resolved from the file system internal
to the CHM file. Make sure that you include all the nec-
essary files in the CHM archive.
Images and media files should also be referenced using
relative links. Those that do will be included as part of the
CHM archive.
Scripts (JavaScript, VBScript, etc.) can be used in help
topics, but be sure to test your pages after they’ve been
compiled. My experience indicates that some scripts cause
problems when they’re executed from within a CHM file.
In other words, the fact that a script works on a Web site
does not ensure that it will work in a CHM file.

Table of Contents
HTML Help includes a table of contents control capable of
displaying sources based on the proposed Web Collections
standard. The standard HTML Help documentation includes
information about the format of HTML Help Contents files
(HHC). Most HTML Help authoring tools offer visual tools
that will help you construct these files without learning the
details of the format.

When you create HTML Help documents, you have to
decide if you want the help to appear in the standard browser
window, or in the tri-pane window supplied by HTML Help.
The tri-pane window displays a window divided into three
panes: the toolbar at the top, the navigation pane on the left,
and the help topic content on the right (see Figure 2). When
7 May 1998 Delphi Informant
you use the tri-pane window, all you
must do to create a table of contents
is to create the HHC file and include
it with the CHM archive. If the
browser is your target user interface,
you will need to create a Frameset file
and an HTML page that hosts the
table of contents control. Microsoft
provides an ActiveX component and a
Java applet; both can be used to dis-
play the table of contents.

Keyword Index
HTML Help includes an index control
capable of displaying sources based on
the proposed Web Collections standard.
The standard HTML Help documenta-
tion includes information about the

format of HTML Help index files (HHK).

Like table of contents files (HHC), index files can be used
in an HTML Help document displayed in the browser, by
using a Frameset file, or the standard tri-pane window sup-
plied by HTML Help.

HTML Help “Windows”
A help system can use different windows to display the
help document. HTML Help allows the creation of win-
dow types that can be used when the help is displayed.
The windows are defined in the HTML Help project file
(HHP file), and you can define parameters, such as win-
dow style, placement, toolbar format, and more. An appli-
cation can use the different window types to display the
different kinds of help topics.

Most HTML Help authoring tools will allow you to create
window definitions visually without learning the syntax used
in the HHP file. If you need to learn this syntax, however, it’s
covered in the standard HTML Help documentation. In
addition to window definitions in the authored file, HTML
Help windows can be defined in code.

Context Sensitive Help
Context Sensitive help is the ability to call help topics from a
running application using help topic identifiers, i.e. numeric
values assigned in the application to refer to a specific topic.
HTML Help CHM files can include the mapping between a
topic’s URL to its numeric identifier, thus allowing an appli-
cation to call help display using the numeric ID.

HTML Help numeric mapping is done using the “alias” sec-
tion of the HHP file, where a URL is “aliased” to an identifier.
Although the HTML Help documentation states that numeric
values can be used in the alias section, presently the HTML
Help compiler seems to ignore this option, so it’s important
you create a string alias to the URL. For example:

IDH_MAIN=homepage.html

On the CoverOn the Cover
will set the alias IDH_MAIN to point to the URL
homepage.html. After the alias has been set, you need to
add a standard C header file to the map section of the
HHP file. Use the syntax:

#include myheader.h

to use the header file named myheader.h. The header file should
include the mapping between the alias values and the numeric
values. Assuming that IDH_MAIN is mapped to the numeric
value 251, the header file will include a line like the following:

#define IDH_MAIN 250

How to Author HTML Help
The standard HTML Help distribution from Microsoft is
available as a free download from http://www.microsoft.com/-
workshop/author/htmlhelp/. The download includes the
HTML Help Workshop — a bare-bones HTML editor and
the HTML Help project editor. HTML Help Workshop
comes with a good image capture and conversion utility, and
the original htmlhelp.h header file.

Most of the authoring tool vendors offer some help for the
help authors. Some offer conversion of old WinHelp pro-
jects to the new HTML Help format (Microsoft’s HTML
Help Workshop does it too), and some offer native HTML
Help authoring tools.

Using HTML Help in Your Apps
HTML Help is accessed from applications using the new
HtmlHelp API function. This function is modeled after the
WinHelp API function call and offers similar parameters and
command sets. The original C header definition is:

HWND HtmlHelp(HWND hwndCaller, LPCSTR pszFile,

UINT uCommand, DWORD dwData);

The standard HTML Help documentation provides detailed
information about the HtmlHelp call. The standard distribu-
tion includes the htmlhelp.h header file that defines the
HTML Help constants and calls. For Delphi programmers, a
file named HtmlHelp.pas is available with this article (see
end of article for download details).

If you want to link to the HTML Help DLL dynamical-
ly, you need to use the LoadLibrary function call to load
HHCtrl.OCX, and use GetProcAddress on HtmlHelpA to
get the function address. This will give you the pointer to
the HtmlHelp function. Because of Delphi’s naming
restrictions, this function is named HH in the converted
HtmlHelp.pas file (you cannot have a function that
shares the name of the unit). This translates to the fol-
lowing Object Pascal definition:

function HH(hwndCaller: THandle; pszFile: PChar;

uCommand: Cardinal; dwData: Longint): THandle;
8 May 1998 Delphi Informant
Calling Context Sensitive HTML Help
HTML Help offers context sensitivity through the
HH_HELP_CONTEXT command of the HtmlHelp API
function. Assuming you created a CHM file and defined
topic aliases and mapping as described in this article, all you
need to do is call the HtmlHelp function with the
HH_HELP_CONTEXT constant, and pass the topic’s
numeric value as the data parameter of the function.

If you are developing an application using Delphi or
C++Builder, and want to use a standard control’s
HelpContext property to supply the topic IDs, Delphi’s VCL
will try to execute WinHelp to deliver the context sensitive
help topics. To fix this problem you need to hook Delphi’s
application object’s OnHelp event.

In the code of your application’s main form unit, add a func-
tion with the following signature:

function HelpHook(Command: Word; Data: Longint;

var CallHelp: Boolean): Boolean;

Then write the code to the function:

function TmainForm.HelpHook(Command: Word; Data: Longint;

var CallHelp: Boolean): Boolean;

begin
if (Command in [Help_Context, Help_ContextPopup]) then

begin
HH(Application.MainForm.handle,

'd:\path-to\chmfile.chm', HH_Help_Context, Data);

CallHelp := False;

end
else

// Trap context calls; ignore all other calls.
CallHelp := True;

Result := True;

end;

The last step is to set the application’s OnHelp event to
HelpHook in the OnCreate event of the main form:

procedure TMainForm.FormCreate;

begin

...

Application.OnHelp := HelpHook;

...

end;

You can now set the HelpContext property of any control
that requires context sensitive help to the topic ID from
the CHM file. When the user presses 1 when the
control has focus, context sensitive help will be provided
by HTML Help. Note that you must ensure the applica-
tion’s help file does not point to any HLP (or other) file. If
this happens, the VCL’s default behavior overrides the
hook we’ve been discussing.

Embedding HTML Help Windows
To embed an HTML Help window in your application,
you need to create a new HTML Help window type that

http://www.microsoft.com/workshop/author/htmlhelp/
http://www.microsoft.com/workshop/author/htmlhelp/

On the Cover
uses the WS_CHILD style instead of the default
WS_OVERLAPPED style.

The easiest way to embed an HTML Help window in your
application’s window is to create a new HTML Help window
definition in code using the HH_SET_WIN_TYPE constant of
the HtmlHelp API function. You will need to create an
HH_WinType structure and set it to the window properties you
want. It will be important to set the fsValidMembers member of
this record to include HHWIN_PARAM_PROPERTIES,
HHWIN_PARAM_RECT, and HHWIN_PARAM_STYLES.
You can also choose to set other members of the record as valid.

One of the parameters you must define for fsWinProperties
is HHWIN_PROP_NOTITLEBAR, and
HHWIN_PROP_NODEF_STYLES. You will need to trap
size changes, update the rcWindowPos member of the
structure, and update the window definition by calling
HtmlHelp again with WW_SET_WIN_TYPE.

HTML Help windows can notify the parent window of
navigation changes and track events. You can use these
notification messages to update your application’s user
interface based on the user’s navigation of the help file,
thus creating true-to-life tutorial sections that help the
user see the application’s dialog boxes and controls to learn
a complicated procedure.

Creating embedded HTML Help windows is beyond the
scope of this article, but if you’re interested in a free com-
ponent that encapsulates the embedded HTML Help cre-
ation and usage procedures, point your browser to
http://www.hyperact.com/-DelphiStuff.html and download
one that I wrote.

Deploying Applications with HTML Help
HTML Help is a standard part of Microsoft IE 4 and future
Microsoft operating systems (Windows NT 5.0 and Windows
98). If you know your customers have one of these environ-
ments, you don’t need to worry about deployment.

HTML Help can also work on NT 4.0x and Windows 95 if
the client machine includes a version of IE 3.02 or later. The
easiest way to ensure your application will work on the target
machine is to ask your customer to install IE 4; it doesn’t
need to be the default browser, but it’s necessary because
HTML Help uses it as its layout engine.

If the customer is limited to IE 3.02, you will need to distrib-
ute and install the following files:

Place hhctrl.ocx, itss.dll, and itircl.dll in the Windows
\System directory.
Place hh.exe in the \Windows directory.

You’ll also need to execute the following commands to register
HTML Help with Windows:

hh /register

Regsvr32 hhctrl.ocx
9 May 1998 Delphi Informant
Conclusion
This should get you started using HTML Help with Delphi. A
sample Delphi application that implements HTML Help is
available for download (see end of article for details). And should
you need it, documentation for the HTML Help API is available
online at http://www.microsoft.com/msdn/sdk/inetsdk/-
help/htmlhelp/hhwapi.htm. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAY\DI9805RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer of
eAuthor Help, HyperAct’s HTML Help authoring tool. For more information
about HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910 or
http://www.hyperact.com.

http://www.microsoft.com/msdn/sdk/inetsdk/help/htmlhelp/hhwapi.htm
http://www.microsoft.com/msdn/sdk/inetsdk/help/htmlhelp/hhwapi.htm
http://www.hyperact.com
http://www.hyperact.com/-DelphiStuff.html

On the Cover
Delphi 2, 3 / Help / Messages

By David Hemphill

Figure 1: The

10 May 1998 Delphi Informant
What’s This?
Implementing a “What’s This?” Help Toolbar Button

Windows 95 introduced a new form of context-sensitive help known as
“What’s This?” However, the built-in functionality available from

Windows 95 and Delphi cover only two of the methods for invoking “What’s
This?” help mentioned in Windows Interface Guidelines: 1 and the “?” border
icon, as shown in the upper-right corner of Figure 1. Using only these two
methods assumes all controls in the application can acquire focus (so the user
can press 1 while on the focused control) or reside in a dialog box, which is
the only place the “?” border icon is available.

Most Microsoft applications, such as
Microsoft Word, provide a “?” toolbar but-
ton (see Figure 2) that, when clicked, puts
the application into a help mode just like
the border icon available within dialog
boxes. This extends the “What’s This?” help
mode to the entire application, allowing
“?” border icon.
users to access help for any control. While
this method of invoking help is mentioned
in Windows Interface Guidelines, developers
are on their own if they want this function-
ality in their applications. This article
demonstrates how to add a “What’s This?”
help toolbar button to a main form, a tech-
nique that can be used for new or existing
applications simply by implementing the
following:

a message filter to suspend normal mes-
sage processing and put the application in
a help-mode state; and
a speed button with a “?” icon to invoke
the help mode.

Because this help button can be programmed
entirely in the main form, you may want to
consider creating a form from which all your
main forms can descend, thus providing
“What’s This?” help buttons to all applica-
tions. For the purposes of this article, we’ll
create a new application (start by selecting
File | New Application).

Create the Message Filter
To put an application into help mode, a
method must be plugged into
Application.OnMessage. It’s important to note
that all messages handled by Delphi applica-

Figure 2: The “What’s This?” toolbar button in Microsoft Word.

On the Cover
tions come through this event. And that’s a lot of messages!
Adding even the simplest processing within this event could
potentially cause Delphi applications to run noticeably slower.
Because we only need to filter messages during a user-invoked
help mode, the message filter will be connected only during
the time the application is in help mode.

To implement the help-mode message filter, we are interested in
the following subset of Windows messages:

WM_KEYDOWN
WM_LBUTTONDOWN
WM_COMMAND
WM_APPSYSCOMMAND
WM_SYSCOMMAND
WM_SETCURSOR

To sustain the help mode, all other messages will be
stopped short of their destination. The code for implement-
ing the message filter is shown in Listing One (beginning
on page 13).

The WM_KEYDOWN message is sent whenever the user
presses a key on the keyboard. The message filter is only
interested in one key during the help-mode state: E. If
the user presses E, help mode is terminated.

While in help mode, if the user presses the primary mouse
button (the left mouse button for right-handed mouse users),
we must look for a control and its associated HelpContext ID
that the user just clicked over, assuming the user clicked over
a control. The message WM_LBUTTONDOWN is sent
when this occurs. The Delphi FindControl function is then
used to return a valid reference to the control based on the
Windows handle passed in Msg.wParam. If FindControl
returns a non-nil result, all we must do is get the help con-
text value. However, if the control the user clicked on has a
HelpContext value of zero, we must traverse our way up the
parent tree until we either find a parent control with a non-
zero HelpContext value, or we reach the form (where Parent =
nil). If we can’t find a non-zero HelpContext value, the mes-
sage is ignored and help mode is sustained. (Note: Passing a
zero value for HelpContext is possible. However, because this
is the HelpContext default value, it’s best to avoid passing
zero; this ensures all help links are explicitly defined.)
11 May 1998 Delphi Informant
The WM_COMMAND message is employed to
handle menus. This message is sent when the
user selects a menu item capable of invoking a
command, i.e. the item doesn’t simply provide
access to a submenu, as is the case with the File

menu item. For example, if the user clicks on
File, we don’t want to display help just yet
(because there would be no way for users to
access the menu items under File, such as New

or Open).

Because WM_COMMAND is used for a variety
of menu functions, there are a few more steps
involved in getting the HelpContext value. First,

we need a reference to the menu item we’re dealing with.
TMenu.FindItem can be used to obtain this reference using
the value LoWord(Msg.wParam) passed by Windows.
However, at this point, we aren’t even sure within which
menu the item resides: We could be dealing with the appli-
cation’s main menu, a form’s popup menu, or even a con-
trol’s popup menu. To handle this situation, we first
assume the item is within the main menu. If FindItem
returns nil, we know the item is within a popup menu.

The popup case gets a bit messy for two reasons. First,
Windows doesn’t pass a reference to the control associated
with the popup. This must be obtained by calling the
FindVCLWindow procedure and passing the parameter
Msg.Pt, which is the x, y location of the mouse at the time the
event occurred. FindVCLWindow returns a reference to the
control at that location. But we’re still not out of the woods.
What if the user clicked over an Edit component that doesn’t
have a popup menu specified, but resides within a GroupBox
component that does? If this is the case, we must traverse the
parent tree until we find our menu. To make things worse,
the PopupMenu property is protected at the TWinControl
level, which means we must perform a type check and type-
cast to specific controls to obtain access to this property.

If your application doesn’t use popup menus, or your applica-
tion uses popups only on certain controls (e.g. GroupBoxes or
Panels), the code within the GetPopupMenuItem function can
be modified to check only for those specific types (or elimi-
nated altogether). As with the mouse-down event, if a non-
zero HelpContext cannot be found for the menu item, this
message is ignored and help mode is sustained.

To deal with the system menu (available by clicking on the
application icon displayed in the upper-left corner) and
border icons, the WM_APPSYSCOMMAND and
WM_SYSCOMMAND messages must be handled. A set of
predefined constants can be compared to the parameter
Msg.wParam passed by Windows. Because there are no
HelpContext IDs associated with these menu items, they
must be provided directly from within Delphi code.

At this point, almost all the message processing is in place.
However, support for the WM_SETCURSOR and

procedure TMainFM.WMSetCursor(var Msg: TWMSetCursor);

begin
if FHelpMode then

begin
Screen.Cursor := crHelp;

Msg.Result := 1; // Message handled.
end

else
inherited;

end;

procedure TMainFM.WMSysCommand(var Msg: TWMSysCommand);

begin
if FHelpMode and

((Msg.CmdType and $FFF0 = SC_MINIMIZE) or
(Msg.CmdType and $FFF0 = SC_MAXIMIZE) or
(Msg.CmdType and $FFF0 = SC_CLOSE)) then

PostMessage(Application.Handle, WM_SYSCOMMAND,

$FFF0 and Msg.CmdType, 0)

else
inherited;

end;

Figure 3: Cursor and border icon message handling.

On the Cover

procedure TMainFM.HelpBtnClick(Sender: TObject);

var
OnMessageBackup: TMessageEvent;

FOrigCursor: TCursor;

begin
// Save the current cursor value.
FOrigCursor := Screen.Cursor;

// Suspend current message handling, if applicable.
OnMessageBackup := Application.OnMessage;

Application.OnMessage := HlpMessageFilter;

try
FHelpMode := True;

Screen.Cursor := crHelp;

// Localize message processing to ensure
// turning off FHelpMode.
while FHelpMode do

Application.ProcessMessages;

finally
// Ensure help mode is turned off.
FHelpMode := False;

// Resume previous message handling, if applicable.
Application.OnMessage := OnMessageBackup;

Screen.Cursor := FOrigCursor; // Restore the cursor.
end;

end;

Figure 4: An OnClick event to invoke help mode.
WM_SYSCOMMAND messages must be added directly
in the main form. To do this, declare two private methods
in the form itself using the message directive:

procedure WMSysCommand(var Msg: TWMSysCommand);

message WM_SYSCOMMAND;

procedure WMSetCursor(var Msg: TWMSetCursor);

message WM_SETCURSOR;

The implementation of these two methods is shown in
Figure 3. The WM_SETCURSOR message is not
processed by Delphi, and thus, isn’t dispatched through
TApplication.OnMessage. However, to keep the mouse cur-
sor set to the “?” icon during help mode (the cursor
changes back to the default when clicking or hovering over
menus), we need to handle this message when it is sent
directly to the form to keep Screen.Cursor set properly. The
WM_SYSCOMMAND event must be handled from both
the message filter and the main form. This is because
Delphi handles the clicks for the border icons before
Application.OnMessage has a chance to respond. Therefore,
we need to check if the user clicked over the Minimize,
Maximize, or Close border icon, and translate the message
parameters so this situation can be handled in the same
manner as the system menu items of the same name.

Now it’s time to deal with invoking help, should a non-
zero HelpContext ID be found. This is accomplished by
canceling help mode and posting a message to the
Windows message queue that will tell our application to
invoke help (see the HlpMessageFilter method used in
Listing One). It’s critical that help mode be terminated
before calling PostMessage. Otherwise, the message filter
will intercept the message we just posted and help won’t be
displayed. Furthermore, the user will still be in help mode.
The information passed to PostMessage tells Windows to
send the CM_INVOKEHELP message to our application.
HELP_CONTEXTPOPUP is the type of help
TApplication will invoke (in this case, “What’s This?”-style
help), as well as the HelpContext ID identifying the actual
help item in the help file.

Connecting and Disconnecting the Message Filter
Everything is now in place for the help mode to be invoked;
the only thing left to do is program a speed button to invoke
the help-mode state. Place a SpeedButton component on the
main form (don’t worry about the “?” graphic for now), and
double-click on the control to modify its OnClick event
method as shown in Figure 4.

First, set the value of FHelpMode to True. Then, assign the
HlpMessageFilter method to TApplication.OnMessage. As
soon as the method is connected, the message filter will
replace all normal Application processing with the help-
mode processing. Although this seems simple, exercise cau-
tion whenever hooking up to TApplication.OnMessage. To
ensure normal processing will resume if an exception is
12 May 1998 Delphi Informant
raised while the application is in the help-mode state, we
can localize the message processing within the OnClick
event. To do this, a while loop is implemented that does
nothing more than execute Application.ProcessMessages
while the application is in the help-mode state. This allows
the message processing to execute within the context of a
try..finally block. The finally clause ensures the help-mode
state will be cleaned up whether help mode terminates
normally, or not.

Run the Application
Before testing the help-mode button, a few controls and a
help file will be needed to know if the help filter is success-
ful in displaying “What’s This?” help. For testing purposes,

On the Cover
Wordpad.hlp (located in the \Windows directory by
default) can be specified as the help file on the Application
tab of the Project Options dialog box (accessed by selecting
Project | Options). The help text displayed will be meaning-
less within the context of our application, but this will
allow us to test the message filter without having to build a
Windows Help file.

Next, place a GroupBox component containing two Edit
components on the form. Give the GroupBox and one of
the Edit components a HelpContext ID, but leave the other
Edit component’s HelpContext set to zero. Now, run the
application and click on the help speed button to invoke
the message filter. The mouse cursor should change to the
“?” icon. Click on one of the edits to invoke “What’s
This?” help. Note that the Edit component with the zero
HelpContext value displays help attached to the GroupBox,
but the Edit component containing a HelpContext value
displays its own help.

The “?” Glyph
To polish the look of the “What’s This?” help speed but-
ton, you’ll want to set the Glyph property of the button to
the “?” graphic. This graphic isn’t readily available from
Windows or Delphi; it has been included with the source
code accompanying this article for your convenience.
Otherwise, this becomes a do-it-yourself project.

Conclusion
Providing a “What’s This?” toolbar button on the main
form of your applications allows users to access context-
sensitive help on all controls, not just controls that can
acquire focus. In this example, the message filter calls
PostMessage specifying the style of help to be
HELP_CONTEXTPOPUP (which displays the help in the
“What’s This?” format). For some applications, however, it
may make sense to display more information in a full-blown
Help window. This can easily be accomplished by passing
HELP_CONTEXT instead of HELP_CONTEXTPOPUP
in the PostMessage call. One of the benefits of “What’s
This?”-style help, however, is that the entire help applica-
tion doesn’t need to be loaded into memory to display the
help text — whereas using HELP_CONTEXT, the help
application is invoked. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAY\DI9805DH.

David Hemphill is a consultant for Compuware Corporation in Minneapolis, MN,
specializing in Delphi and object-oriented design and development. David can
be contacted by e-mail at hemptava@pclink.com.
13 May 1998 Delphi Informant
Begin Listing One — Message Filter
procedure TMainFM.CancelHelpMode;

begin
FHelpMode := False;

FHandled := True;

end;

function TMainFM.HandleClick(Msg: TMsg): THelpContext;

var
Control: TWinControl;

begin
Result := 0;

// Find the control at position user clicked.
Control := FindControl(Msg.Hwnd);

while (Result = 0) and (Control <> nil) do begin
// Get Control's HelpContext.
Result := Control.Helpcontext;

// If HelpContext = 0, recursively traverse the child/-
// parent tree until a HelpContext ID or Form is found.
if Result = 0 then

Control := Control.Parent;

end;
FHandled := True;

end;

function TMainFM.HandleMenuItem(Msg: TMsg): THelpContext;

var
AMenu: TMenu;

MenuItem: TMenuItem;

ID, MenuFlag: Integer;

function GetPopupMenuItem: TMenuItem;

var
AControl: TWinControl;

begin
AMenu := nil;
AControl := FindVCLWindow(Msg.Pt);

repeat
if AControl is TForm then // TForm

AMenu := TForm(AControl).PopupMenu

else if AControl is TGroupbox then // TGroupbox
AMenu := TGroupBox(AControl).PopupMenu

else if AControl is TPanel then // TPanel
AMenu := TPanel(AControl).PopupMenu

else if AControl is TRadioGroup then // TRadioGroup
AMenu := TRadioGroup(AControl).PopupMenu

else if AControl is TDrawGrid then // Grids
AMenu := TDrawGrid(AControl).PopupMenu;

if AMenu <> nil then
// Does parent have the popup menu?
AControl := AControl.Parent;

until (AMenu <> nil) or (AControl = nil);

result := AMenu.FindItem(ID, fkCommand);

end;

begin
Result := 0;

MenuItem := nil;
ID := LoWord(Msg.wParam);

MenuFlag := LoWord(Msg.hWnd);

if (MenuFlag <> $FFFF) or (ID <> 0) then
begin

// Look for item in form's main menu.
AMenu := Screen.ActiveForm.Menu;

if AMenu <> nil then
MenuItem := AMenu.FindItem(ID, fkCommand);

// Try to find item in popup menu.
if MenuItem = nil then

MenuItem := GetPopupMenuItem;

// Get menu item's HelpContext.
if MenuItem <> nil then

On the Cover
Result := MenuItem.Helpcontext;

FHandled := True;

end;
end;

function TMainFM.HandleSystemMenu(Msg: TMsg): THelpContext;

const
// Assign values to use for system menu and border icon
// HelpContext IDs. These can be any number. Negative or
// positive numbers are valid in WinHelp files.
cSysMenuRestore = -100;

cSysMenuMove = -110;

cSysMenuSize = -120;

cSysMenuMinimize = -130;

cSysMenuMaximize = -140;

cSysMenuClose = -150;

begin
Result := 0;

case Msg.wParam of
SC_RESTORE: Result := cSysMenuRestore;

SC_MOVE: Result := cSysMenuMove;

SC_SIZE: Result := cSysMenuSize;

SC_MINIMIZE: Result := cSysMenuMinimize;

SC_MAXIMIZE: Result := cSysMenuMaximize;

SC_CLOSE: Result := cSysMenuClose;

else
CancelHelpMode;

end;

// Keep menu command from executing if
// HelpContext ID is found.
FHandled := (Result <> 0);

end;

procedure TMainFM.HlpMessageFilter(var Msg: TMsg;

var Handled: Boolean);

var
HContext : integer;

begin
FHandled := Handled;

HContext := 0;

case Msg.Message of
WM_KEYDOWN:

if (Msg.wParam = VK_ESCAPE) then
// User pressed <esc> key.
CancelHelpMode;

WM_LBUTTONDOWN:

// User clicked while in help mode.
HContext := HandleClick(Msg);

WM_COMMAND:

// User clicked on a menu item while in help mode.
HContext := HandleMenuItem(Msg);

CM_APPSYSCOMMAND, WM_SYSCOMMAND:

// Border icon or System Menu item.
HContext := HandleSystemMenu(Msg);

end;

Handled := FHandled; // Message handled above?
if HContext <> 0 then // HelpContext ID found?
begin
CancelHelpMode;

// Tell Delphi to invoke help.
PostMessage(Application.Handle, CM_INVOKEHELP,

HELP_CONTEXTPOPUP, HContext);

end;
end;

End Listing One
14 May 1998 Delphi Informant

Visual Programming
Delphi 1, 2, and 3 / Windows Messages

By Gary Warren King

Figure 1: The message

15 May 1998 Delphi Informant
Setting Limits: Part II
Hijacking a Form’s Message Loop to
Enforce Form Size Limitations

This is the second installment of a two-part series on controlling the mini-
mum and maximum sizes of your application’s forms using the Windows

WM_GETMINMAXINFO message. The first article set the stage and discussed
two ways to catch the message:

Writing the code in each form that requires it.
Using form inheritance in Delphi 1 and visual form inheritance in Delphi
2 and 3.
lo
We also looked at the problems with these
approaches, and wondered if there was a bet-
ter way of doing things. To that end, this
article discusses how to build a component
that adds size control to the form that owns
it. This component, and others like it, lets us
build flexible forms without the liabilities
imposed by static inheritance.

WndProc and All That
As you probably know, Microsoft Windows
works by sending messages back and forth
op filters, then sends messages to WndProc.
between all the processes running on your com-
puter. Some of these messages are created by
your activities (e.g. moving the mouse or typing
on the keyboard); many more are created by
Windows itself as it goes about its work of
managing memory and user input, and han-
dling networking and the file system. Each win-
dow and process (actually each thread, but we
don’t need to get that complicated here) has its
own message queue where the messages target-
ed for that process line up and wait to be seen.

The messages in the message queue are
processed one-by-one by a message loop — a
chunk of code that does some preliminary
filtering — then sends the message on to the
window procedure (WndProc for short) of
the window for which the message is intend-
ed (see Figure 1). In essence, a window pro-
cedure is a glorified case statement; it takes a
particular message ID and some parameters,
and does something in response. Every win-
dow in Windows has an associated window
procedure that gives that window its particu-
lar behavior. Because many windows need to
handle the same messages in the same way,
the Windows operating system provides two
mechanisms to share WndProcs: window
classes and window subclasses. Note that
these are not the same as object-oriented
classes and object-oriented subclasses. The
concepts are similar, but different. It’s unfor-

Visual Programming
tunate (and confusing) that Windows overloads these words,
but there isn’t much that can be done about it now.

A window class, sometimes called a WndClass because of the
structure associated with it, is a way of associating each “physical”
window in the system with a particular category, e.g. an edit box,
a button, etc. The class of a window is specified when it is creat-
ed via the CreateWindow or CreateWindowEx API call. Delphi
takes care of all the Windows-level class registration and window
creation automatically, so we won’t cover the details here. Note
that each window class implies a standard set of attributes: the
class style, the default icon, the default background color, etc.
The window class also specifies the window procedure that all
the windows in this class use in common. This class mechanism
makes it easy for many of the standard windows to share their
window procedures, but in and of itself, does not allow windows
that are almost like an edit box or button. To handle these win-
dows and prevent the proliferation of window classes, Windows
provides a window subclassing mechanism.

Window subclassing provides a way to link window proce-
dures in a chain so WndProcs higher up the chain can call the
ones lower down the chain. This means we can base a new
window on a standard WndClass, then write a window proce-
dure that handles only the new functionality while building
on the standard behavior of the window procedure of the
original WndClass. In practice, the first window procedure in
the chain is given the message to process. It can process it
completely or partially, or it can ignore it (see Figure 2). If
processed completely, there will be no more processing for
that message. In the two other cases, the message is passed on
to the next window procedure in the chain. Eventually, the
message is either consumed, or is sent to Def WndProc, the
standard Windows window procedure.

Windows Messaging and Delphi
As we saw last month, most of the complexity of windows mes-
saging is hidden very nicely by Delphi. In relation to the previ-
ous discussion, Delphi automatically handles all the details of
16 May 1998 Delphi Informant

Figure 2: The first window procedure in a chain can process a mes
or it can ignore it altogether.
associating each form (window) in your application with the
correct class. Delphi also makes it easy to customize message
handling for particular messages by using the standard event-
handling system, or via the message keyword when the regular
event handlers are not flexible or specific enough. When this
isn’t enough, Delphi also exposes everything we need to do real
window subclassing and to customize the message handling.

Hijacking a Form’s Message Loop
Our goal is to have a form that responds to the
WM_GETMINMAXINFO message in a custom fashion.
Last month’s article showed how to do this by altering the
object-oriented class of the form (directly or by Delphi
object subclassing). The discussion of window subclassing in
the previous section shows there is another way; if we can
intercept messages intended for the form and pre-process
them, we can alter the behavior of the form (with respect to
WM_GETMINMAXINFO or any other message) without
altering the form itself. Thus, our plan is to create a compo-
nent that can take over part of its form’s window procedure.
This component will intercept the messages intended for its
form and pre-process them before passing them on to the
form for the regular processing. Let’s see what we need to do.

Changing a Form’s Window Procedure
Generically speaking, a window procedure takes the form:

function WindowProc(Wnd: HWnd; Msg, wParam: Word;
lParam: Longint): Longint;

or, in 32-bit land:

function WindowProc(Wnd: HWnd; Msg, wParam: Longint;
lParam: Longint): Longint;

where Wnd is the handle of the window currently using this
window procedure, Msg is the identifier for the Windows
message being processed, and wParam and lParam contain
information whose meaning varies for each message.

A window procedure is just a
function, and a function is just
an address in memory that your
application (and the operating
system) treats in a special way.
We can change a window’s win-
dow procedure and alter its
behavior by manipulating this
address. Every window in
Windows stores the address of
its window procedure as a point-
er, which can be accessed and
changed via the GetWindowLong
and SetWindowLong Windows
API calls. As their names imply,
GetWindowLong retrieves one of
the pieces of window informa-
tion and SetWindowLong sets

sage completely or partially,

Visual Programming

type
{ Defined by Delphi in the WinTypes or Windows unit. }
TFarProc = Pointer;

var
FOldWndProc: TFarProc;

FNewWndProc: TFarProc;

...

FNewWndProc := // A windows procedure that is
// one of my methods.

FOldWndProc := TFarProc(GetWindowLong(AForm.Handle,

gwl_WndProc));

SetWindowLong(AForm.Handle, gwl_WndProc,

Longint(FNewWndProc));

Figure 3: Changing the window procedure of a form.
one of the pieces of window information. In both API calls,
the value being manipulated is a 32-bit long integer.

GetWindowLong takes a window handle and a code that speci-
fies exactly what piece of information to return. SetWindowLong
takes the handle, the code, and the new value to which
this information should be set. To make Delphi and
Windows happy, everything passed in and out of these API
calls must be a Longint, or it must be typecast into a
Longint. Let’s see how these two calls can allow us to
change a window’s window procedure.

If we assume that FNewWndProc is a pointer to a method
that has the correct signature, we can change the window pro-
cedure of a form, as shown in Figure 3. Because
SetWindowLong returns the original value of the information
being set, we can code it more succinctly as:

FoldWndProc :=

TFarProc(SetWindowLong(AForm.Handle, gwl_WndProc,

Longint(FNewWndProc)));

where gwl_WndProc is one of the many constants defined by
Windows that makes the code somewhat easier to read. In
this case, the “gwl” prefix specifies that this constant is used
in the GetWindowLong API call. Note that we need to type-
cast the result of GetWindowLong and the input parameter of
SetWindowLong to keep the Delphi compiler and Windows
happy with the pointers we’re passing about.

Mucking about with function pointers and addresses is a little
confusing (and a good way to generate a GPF when you
make a mistake), but the basic idea is simple:

Functions are merely addresses in memory.
Variables can point to functions (in which case we call
them function pointers).
We can use function pointers to call the functions to
which they point.
Changing the value of a function pointer (making it point
to a new function) changes the function we call.

Using a function pointer is just like consulting your direc-
tions when you are driving; you read the directions to see
17 May 1998 Delphi Informant
where to go. If you are given different directions (change the
function pointer), you’ll go somewhere else.

In our example, once the call to SetWindowLong returns,
every message that would have gone to the regular window
procedure for AForm will come to whatever FNewWndProc is
pointing to. This procedure can then do anything it likes with
the incoming messages; it can respond to them itself, alter
them and pass them along, or leave them unchanged. After it
does its work, our new window procedure should use the
CallWindowProc API function to pass the message on to the
original window procedure. We’ll see this in detail when we
create our component.

One problem remains with the previous code; it will work
wonderfully if we have a window procedure to pass to
SetWindowLong. However, since we’re writing a component,
we need to tell Windows to call a particular method in a
particular object. Sadly, all Windows knows how to do is
call a global method not attached to an object or class.
Fortunately, Delphi comes to the rescue with the
MakeObjectInstance function and its partner, the
FreeObjectInstance function. Though nearly undocumented,
this function takes a Delphi method pointer and uses some
low-level assembly magic to return a pointer to a window
procedure function we can use. This window procedure
that Delphi creates will call the method we specified with
the method pointer. The only important difference here is
that the Delphi window procedure looks like this:

procedure TSomeClass.AWindowProcedure(var msg: TMessage);

where TMessage is defined as:

type { In Messages.pas (32-bit version) }
TMessage = record

Msg: Cardinal;

Wparam: Longint;

LParam: Longint;

Result: Longint;

The actual definition is slightly more complex, but this is the
important part. As you can see, the separate parameters in the
original procedure are mapped into a single record, and the
window handle disappears altogether. The assumption is that
the class maintaining this window procedure will also main-
tain the identity of the window handle.

MakeObjectInstance and FreeObjectInstance should be used in
pairs because FreeObjectInstance releases any resources that
MakeObjectInstance allocates. These functions are defined in
Forms.pas and are exactly what Delphi uses to connect
instances of the VCL classes (like TForm) with their Windows
counterparts. Though undocumented, the code will show that
using them isn’t difficult.

Putting It Together
To make all this clear, we’ll build our new TDSMinMax com-
ponent (see Figure 4). Much of this code is similar to the code

Visual Programming

TDSMinMax = class(TComponent)
Private

FOldWndProcForm : TFarProc;

FOwnerOnShow : TNotifyEvent;

FParentForm : TForm;

FWindowProcedureForm : TFarProc;

procedure HookForm;
procedure UnhookForm;
procedure WndProcForm(var msg: TMessage);

Figure 4: Building the new TDSMinMax component, a compo-
nent that gives its form complete control over its size by using
window subclassing.

procedure TDSMinMax.HookForm;

begin
{ Hook the window procedure of my owner only if I have

an owner and its window handle has been created. }
if assigned(FParentForm) and

FParentForm.HandleAllocated then
begin

{ Create the window procedure from one of my methods;
be sure to pair this with a call to
FreeObjectInstance. }

FWindowProcedureForm :=

MakeObjectInstance(WndProcForm);

{ Subclass my form's window by inserting my window
procedure into the message chain. }

FOldWndProcForm := TFarProc(SetWindowLong(

FParentForm.Handle, gwl_WndProc,

Longint(FWindowProcedureForm)));

end;

end;

Figure 5: HookForm assigns the new window procedure
(WndProcForm) to the form.

procedure TDSMinMax.WndProcForm(var msg: TMessage);

begin
if msg.Msg = wm_GetMinMaxInfo then

{ We pay special attention to the WM_GETMINMAXINFO
message. The WM_GETMINMAXINFO message is sent to a
window when Windows needs the maximized position or
dimensions of the window or needs the maximum or
minimum tracking size of the window. The maximized
size of a window is the size of the window when its
borders are fully extended. The maximum tracking size
of a window is the largest window size that can be
achieved by using the borders to size the window. The
minimum tracking size is the smallest window size
that can be achieved by using the borders to size
the window. }

with PMinMaxInfo(msg.lParam)^ do begin
if FMaxSizeAssigned then

ptMaxSize := FMaxSize;

if FMaxPositionAssigned then
ptMaxPosition := FMaxPosition;

if FMinTrackSizeAssigned then
ptMinTrackSize := FMinTrackSize;

if FMaxTrackSizeAssigned then
ptMaxTrackSize := FMaxTrackSize;

end;

{ Call the original window procedure. }
msg.Result :=

CallWindowProc(FOldWndProcForm, ParentForm.Handle,

msg.Msg, msg.wParam, msg.lParam);

end;

Figure 6: The WndProcForm method.
in last month’s article, and deals with correctly handling the
WM_GETMINMAXINFO message. The new code involves
subclassing the component’s owner (the form it lives on).
First, we need several new attributes to store various win-
dow procedures and other important information. The
snippets shown in this article only include the code
required for the subclassing; the rest of the code deals with
tracking the values needed to provide size control, and are
much like the code from last month’s article.

Note: MaxHeight, MaxWidth, MaxLeft, and MaxTop are val-
ues used to determine the size of a form when you maximize
it. The ResizeMaxHeight and ResizeMaxWidth properties are
used to define the maximum allowable height a form can
achieve when being resized. The ResizeMinHeight and
ResizeMinWidth properties are conversely used to define the
minimum allowable height and width the form can achieve
when being resized.

As you can see, we store the form’s original window procedure,
and a pointer to the one we’ll create, with MakeObjectInstance.
We also store a pointer to the form’s OnShow event (for reasons
that will become evident) and an object reference to our parent
form (mostly to make the code a little easier to read).

The actual job of starting and stopping the interception of
the form’s messages is taken care of in the HookForm and
18 May 1998 Delphi Informant
UnhookForm member functions. WndProcForm is the method
that will become the new window procedure. Figure 5 shows
how we assign our new window procedure to the form.

If we have a parent form to subclass, and this parent form has
created a handle for its physical window (see the next section for
a discussion on the HandleAllocated function and form window
handles in general), then we create a window procedure out of
one of our member functions (WndProcForm) and hand it to our
parent form to use as its new window procedure. This means
that all the messages intended for the form will first come to us
by calling the WndProcForm method, as shown in Figure 6.

As you can see, the new window procedure passes every mes-
sage but one to the original window procedure unchanged.
However, any WM_GETMINMAXINFO messages will be
massaged with the other information stored and managed by
the component (details of this massaging can be found in last
month’s article). All of the messages are passed to the original
procedure using the CallWindowProc API call. Notice how we
need to split the various pieces of the TMessage record apart
to call CallWindowProc.

This message massaging will continue until UnhookForm is called
to break the connection, as shown in Figure 7. UnhookForm sim-
ply undoes the actions that HookForm started; it resets the win-
dow procedure of the parent form and calls FreeObjectInstance to
restore the memory claimed by MakeObjectInstance.

Getting It Started
So far, we’ve seen how to grab a form’s messages (HookForm),
how to process them once we’ve grabbed them

Visual Programming

procedure TDSMinMax.UnhookForm;

begin
{ Undo what Hookform did; reset the window procedure
and FreeObjectInstance. }

if not (FOldWndProcForm = nil) then
begin
if (FParentForm <> nil) and

(FParentForm.HandleAllocated) then
SetWindowLong(FParentForm.Handle, gwl_WndProc,

Longint(FOldWndProcForm))

FOldWndProcForm := nil;
FParentForm := nil;

end;

if not (FWindowProcedureForm = nil) then
begin
FreeObjectInstance(FWindowProcedureForm);

FWindowProcedureForm := nil;
end;

end;

Figure 7: The UnhookForm procedure.

constructor TDSMinMax.Create(AOwner: TComponent);
begin
inherited Create(AOwner);

if not (csDesigning in ComponentState) then
begin
FParentForm := (Owner as TForm);

{ Catch form show. }
FOwnerOnShow := FParentForm.OnShow;

FParentForm.OnShow := OwnerShow;

end;
end;

Figure 8: The TDSMinMax constructor.

procedure TDSMinMax.OwnerShow(Sender: TObject);

begin
{ Create our hook. }
HookForm;

{ Call the original OnShow event (if any). }
if assigned(FOwnerOnShow) then

FOwnerOnShow(Sender);

{ Restore things to normal. }
(Owner as TForm).OnShow := FOwnerOnShow;

FOwnerOnShow := nil;

UpdateParentSize;

end;

Figure 9: The OwnerShow method.
(WndProcForm), and how to stop grabbing them
(UnhookForm). The only missing piece in our component’s
puzzle is the timing. When do we start and stop subclassing?
The important point here is that we can’t subclass a form
unless it actually has a window handle on which to hang our
hat. Delphi carefully separates the creation of a form object
and the creation of the window associated with that object.
This makes good sense because creating a TForm instance
requires a small amount of memory (and little else), but cre-
ating a window requires allocating a window handle and
making a series of potentially time- and resource-expensive
API calls. Delphi hides this distinction and its complexity by
hiding the “physical” window handle behind the form’s han-
dle property. The form will create the handle the first time
this property is referenced, which means that you don’t want
to use the handle property unless you must. To give the
developer greater control over this process, Delphi also pro-
vides the HandleAllocated method, to tell you if the handle
has been created, and the HandleNeeded method, to tell
Delphi that you want the handle now.

When Delphi creates a subclass of TForm that contains a
TDSMinMax component, it will eventually call the
TDSMinMax constructor. The previous handle discussion
means it’s very unlikely that the form’s window will have been
created at this time. Furthermore, we don’t want our con-
structor to force the creation of the form’s window (which
would happen, for example, if we referenced the form’s han-
dle property). Because we can’t guarantee the existence of the
window handle, we can’t call HookForm in our component’s
constructor. To get around this problem, we cheat a bit and
play a game with our owner’s OnShow event. The compo-
nent’s constructor is shown in Figure 8.

First, we make sure our application is running by testing the
ComponentState. If we aren’t designing, we save a reference to
our owner (with a cast to TForm) to make the code easier to
follow. Then, we give it a new OnShow event (after being sure
to save the original). Everything proceeds normally until the
owner form is actually shown.
19 May 1998 Delphi Informant
When this happens, the OnShow event will fire, and our
OwnerShow method will execute, as shown in Figure 9.
In this event handler, we first hook the form. Then, we
call the original OnShow event (if there was one) and
restore the OnShow event to normal. Lastly, we call
UpdateParentSize to force the generation of an initial
WM_GETMINMAXINFO.

Generally speaking, it’s not a great idea to play games like this
with another component’s events. Swapping events in and out
can confuse other clients of the component and lead to code
that’s hard to follow and failures that are difficult to fix. In
this case, the chance of error is slight and the benefits are
manifest; it’s not common to change a form’s event assign-
ments between its creation and the time it’s shown.

Good News and Bad News
The good news is that the TDSMinMax component is com-
plete. Dropping this component on a form adds size control
without altering the form’s class directly or through inheri-
tance. We have created a component that enhances a form
with a new feature that’s transparent to the form and to any
other clients of the form. This is what object-orientation is
supposed to be — objects interacting dynamically in collabo-
rations that produce wholes that can be greater than the sum
of their parts. Components such as TDSMinMax add features
and tools for the developer that can be wired together flexibly
without code. They also allow us to build complex assemblies
without creating dozens of classes.

However, there are at least a few flies in the ointment. Our
component does its magic by carefully taking control of

Visual Programming
another component’s Windows message stream. To be fully
robust, there are a few more wrinkles we need to consider.
The first is that ours might not be the only component trying
to alter the form’s behavior in this manner. If multiple objects
are subclassing the form, we need to ensure things are put
back together properly as objects hook and unhook them-
selves. As presented, TDSMinMax ignores this complexity.

Furthermore, it’s quite possible in Delphi for a form’s physical
window to be destroyed and re-created. This happens, for
example, whenever the BorderStyle or BorderIcon properties are
changed; both of these properties affect the form’s window
style and necessitate the creation of an entirely new window.
Delphi handles the destruction and recreation so transparently
and seamlessly that it seems as if nothing has happened. When
the window is destroyed and re-created, the window handle
and window procedure that TDSMinMax owns becomes null
and void, and TDSMinMax is left out in the cold.

It’s possible to make components such as TDSMinMax that
correctly notice and respond to the multiple subclassing and
the dynamic window recreation that Delphi sometimes per-
forms. Doing so requires creating some standards and playing
some tricks, so we’ll leave it all for a future article.

The Thrilling Conclusion
Hopefully, I’ve convinced you that it’s both possible and
desirable to create components that build new features into a
system without requiring changes to the system’s class struc-
ture — components that play with aggregation and associa-
tion rather than inheritance. We’ve implemented these ideas
in Delphi via the magic of window subclassing. In the
process, we’ve created a component that gives any form com-
plete control over its maximum and minimum sizes.
Components like this make it easy for developers to add use-
ful enhancements to their applications, making building bet-
ter and more useable applications easier and more fun. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\MAY\DI9805GK

Gary King is the principal of DesignSystems (http://www.dsgnsystms.com),
makers of DSAppLock, Remember This, and other fine products for Delphi. He
can be reached at gwking@dsgnsystms.com.
20 May 1998 Delphi Informant

http://www.dsgnsystms.com

OP Tech
Delphi 1, 2, and 3 / Borland Database Engine

By Bill Todd

21 May 1998 Delphi Informant
Delphi Import/Export
Part I: Getting Data into, and out of, ASCII Text Files

Database applications frequently need to import and export data to and
from the database, for use in other applications. This two-part series

explores the tools that Delphi and the Borland Database Engine (BDE) provide
to get data in and out of your database.
Using the BDE ASCII Driver
If you need to import data from a delimited or
fixed-length ASCII text file, you may be able
to use the ASCII driver built into the BDE.
You can also use the ASCII driver to export to
a fixed-length or delimited ASCII text file.
Note also that the ASCII driver only reads and
writes text files; that is, files where each record
ends with a carriage return character, followed
by a line feed character. Reading and writing
fixed-length, undelimited files used by some
mainframe and minicomputer applications are
discussed later in this article.

Importing ASCII Data
Delphi’s implementation of the BDE ASCII
driver lets you treat an ASCII text file as a
table in some respects, and access the file
using a Table component. However, before
you can use an ASCII file, you must create a
schema file that tells the BDE about the for-
mat of the ASCII file. The BDE expects your
ASCII file to have a .TXT file extension. The
schema file must have the same name as the
ASCII file with an extension of .SCH. The
schema file is also an ASCII text file with a

[CNS]

FileType=Fixed

CharSet=ascii

Field1=CNS_ID,Longint,3,0,0

Field2=Lab_Id,Char,10,0,5

Field3=Sample_Number,Char,15,0,18

Field4=Material,Char,15,0,36

Field5=Method,Char,8,0,54

Field6=Weight,Float,6,4,64

Figure 1: An example of a schema file.
format very similar to a Windows .INI file.
None of the entries in the schema file are
case sensitive. Figure 1 shows an actual
schema file from an application.

The first line contains the name of the file
enclosed in brackets. The second line con-
tains the FileType, which must be Fixed for
a fixed-length file or Varying for a delimited
file. The third line contains the CharSet para-
meter, which specifies the language driver
you’re using. If you are importing a delimited
file, you’ll need two more entries in your
schema file, as shown here:

Delimiter = "

Separator = ,

The Delimiter specifies the character used to
enclose alphanumeric fields within the file,
while the Separator identifies the character
used to separate fields within each record of
the delimited file. Following these global
parameters is an entry for each field in a
record. The fields are identified as Field1,
Field2, Field3, etc. You must provide five
values for each field, separated by commas.
These values are:
1) Field Name: The field name is limited to

25 characters and must follow the
Paradox field naming conventions. It can-
not start with a space, but it can contain
spaces. The characters { } () , . [] ! | > -
are invalid. The easiest way to stay out of
trouble is to restrict field names to letters,
numbers, and the underscore character.

OP Tech

[CustVar]

FileType=Varying

Delimiter="

Separator=,

CharSet=ascii

Field1=Customer No,Float,20,04,00

Field2=Name,Char,30,00,20

Field3=Phone,Char,15,00,145

Field4=First Contact,Date,11,00,160

Figure 3: A schema file for the delimited import, from the
ASCIIDRV project.

[CustFix]

FileType=Fixed

CharSet=ascii

Field1=Customer_No,Float,20,0,00

Field2=Name,Char,30,00,20

Field3=Phone,Char,15,00,50

Field4=First Contact,Date,08,00,65

Figure 2: A schema file for the fixed-length import, from the
ASCIIDRV project.
2) Field Type: The type of data contained in this field. The
following types are allowed:

Char: alphanumeric characters
Float: floating point number
Number: 16-bit integer
Longint: 32-bit integer
Bool: Boolean (T or F)
Date: a date formatted according to the date setting in
the BDE configuration file
Time: a time formatted according to the time setting in
the BDE configuration file
Timestamp: a date and time formatted according to the
BDE configuration file settings

3) Number of Characters: This must be less than or equal
to 20 for numeric data types, and must be the maxi-
mum number of characters for Date, Time, and
Timestamp data types.

4) Number of Digits After the Decimal: While this is sup-
posed to specify the number of digits after the decimal
point for floating point numbers, it doesn’t appear to
work. No matter what this value is set to, the number of
digits to the right of the decimal is determined by the loca-
tion of the decimal point in the text file. If there is no dec-
imal point in the text file, the number is imported as an
integer, i.e. with no digits to the right of the decimal point.

5) Offset: The number of characters from the beginning
of the record where this field begins. This value applies
to fixed-length records only, and should be set to zero
for delimited files.

To import an ASCII file, add two Table components and
one BatchMove component to a form in your project. Set
the following properties for one of the Table components:

DatabaseName = the location of the ASCII text file you
are going to import
Exclusive = True
TableType = ttASCII
TableName = the name of the ASCII text file

Set the DatabaseName and TableName properties of the
second Table component to connect it to the table into
which you will import the ASCII file. This table doesn’t
have to exist. Finally, set the following properties of the
BatchMove component:

Destination = the Table component connected to the data-
base table that will receive the imported data
Mode = batCopy to create a new table, or batAppend to
append to an existing table
22 May 1998 Delphi Informant
Source = the Table component connected to the ASCII file

When you call the BatchMove component’s Execute method, the
ASCII file will be imported into the destination table, using the
schema file you’ve created for it. The ASCIIDRV project that
accompanies this article demonstrates importing both fixed-
length and delimited files (see end of article for download
details). Figure 2 shows the schema file for the fixed-length
import; Figure 3 shows the schema file for the delimited import.

You can export a database table to a fixed-length ASCII file in
exactly the same way. The only difference is that the Source
property of the BatchMove component will be the database
table, and the Destination property will be the Table compo-
nent that points to the ASCII file. When you export to an
ASCII file, the BDE ASCII driver creates a schema file for the
exported ASCII file automatically. You can use this schema file
to import the file again using Delphi, or to provide documen-
tation to the recipient of the file that shows the record layout.

Editing an ASCII File
With some restrictions, you can treat a fixed-length ASCII
file as a table and edit the data in the file. The restrictions
that apply are:

ASCII files do not support indexes or any functions that
use indexes.
You must open the ASCII file for exclusive use.
You cannot use a Query component to access an ASCII file.
You cannot delete records.
You cannot insert records in the middle of the file.
Inserting a record appends the record to the end of the file.
Although you cannot view a subset of records in an
ASCII file using indices or queries, you can use TTable’s
Filter property to apply a filter to the file, just as you
would to a database table. This provides a convenient
way to import or view only those records that meet the
filter criteria you impose.

The ASCEDIT project that accompanies this article
demonstrates editing a fixed-length ASCII file. It uses
Table, Datasource, DBGrid, and DBNavigator components,
configured as if to edit a database table, with the exception
of the Table component’s TableType and Exclusive proper-
ties, as previously described.

Using Delphi’s Text-File I/O Routines
Delphi’s System unit contains the Pascal text-file input/output

procedure TForm1.OpenBtnClick(Sender: TObject);

var
txtFile: System.Text;

txtLine: string;
begin

{ Open the file. }
AssignFile(txtFile, FileListBox1.Filename);

Reset(txtFile);

{ Empty the memo and read the file. }
Memo1.Lines.Clear;

while not EOF(txtFile) do begin
Readln(txtFile, txtLine);

Memo1.Lines.Add(txtLine);

end;
end;

Figure 4: Using the AssignFile procedure to open the file, then
calling Reset from TextFile.

OP Tech

procedure TForm1.CopyBtnClick(Sender: TObject);
var

txtFile: System.Text;

i: Word;

begin
{ Open the output file. Overwrite if it exists. }
AssignFile(txtFile, 'copy.txt');

Rewrite(txtFile);

{ Write all of the lines in the Memo component. }
for i := 0 to Memo1.Lines.Count - 1 do

Writeln(txtFile, Memo1.Lines[i]);

{ Close the output file to save what was written. }
System.Close(txtFile);

end;

Figure 5: This OnClick event handler copies lines from the
Memo component to a new text file.
routines. The first step in using Delphi’s text-file routines is to
declare a file variable whose type is Text, as shown here:

var
txtFile: System.Text;

txtLine: string;

Line two declares the text-file variable, and line three declares
a string variable that will hold each line as it’s read from the
file. Note that the file variable’s type is declared as System.Text.
The name of the System unit must be included with the type
(Text) to avoid confusion with the Text property of many of
the components in Delphi.

The next step in reading a text file is opening the file by call-
ing the AssignFile procedure, and moving to the beginning of
the file by calling Reset (see Figure 4) from the sample project,
TextFile. TextFile reads the contents of a text file, and displays
it in a memo component on a form.

The AssignFile call takes two parameters. The first is the text-file
variable and the second is the name of the file. The call to Reset
positions the file pointer to the beginning of the file. If you want
to create a new file and write to it, call Rewrite instead of Reset.
To append to an existing text file, call Append instead of Reset.
The while loop reads the lines from the file one at a time and
loads them into the memo component using the Readln proce-
dure to read each line. Readln takes two parameters; the first is
the file variable, and the second is a String variable that receives
the line of text. You don’t have to use a String variable with
Readln. You can use any valid type. For example, if you have a
text file that contains an integer on each line, you can use:

Readln(TxtFile, I);

to read the numbers, where I is an integer variable. Readln
will ignore any white space in front of the integer and ignore
any text that follows the integer. The code in Figure 5 is the
OnClick event handler for the Copy button in the TextFile
sample program; it illustrates copying the lines from the
Memo component to a new text file. This code is virtually
identical to the code used to read the text file, except for the
call to Rewrite, which creates a new file for output, and the
23 May 1998 Delphi Informant
call to Writeln, which writes a line from the Memo compo-
nent to the file.

Exporting to a Delimited File
There are two ways to export the contents of a table to a
delimited file. The first is using the BDE ASCII Text Driver.
However, there is a trick: The text file must exist. You can
also write a general-purpose, delimited-text export routine
using the text file run-time library routines described in the
previous section. The procedure in Figure 6 takes a file name
and a DataSet component as parameters, and exports the con-
tents of the DataSet to the file.

This routine starts by making sure that the file name and
DataSet parameters are valid. Next, it opens the text file for
output and saves a zero-based number of fields in the DataSet
component. The real work takes place within the for loop.
This loop writes each field from the current record in the
DataSet to the text file, inserting the necessary field delimiters
and separators based on the type of each field.

An if statement checks the field type and skips any BLOB
fields except for memos, because there is no way to store a
BLOB that doesn’t contain text in a text file. The next if
statement writes the opening delimiter if the field is a string
or memo (i.e. ftString or ftMemo). If the field is a memo, a
custom procedure, dgWriteMemo, is called to write it.
Otherwise, the standard Pascal Write procedure is called.
The WriteMemo procedure is described later in this section.

Notice that if the field is not a memo, the Write procedure is
used to write it instead of Writeln. This is because Writeln
writes an entire line to the text file, including the carriage
return/line feed at the end. Write, however, does not append
a carriage return/line feed, so it can be used to write the
fields one at a time.

Next, the closing delimiter character is written if this field is a
string. Finally, the separator character is written if this is not
the last field in the record. The Writeln procedure call writes
the carriage return/line feed at the end of the record. The call
to FDataSet.Next moves to the next record in the DataSet, and
the process repeats until the end of the DataSet is reached.

OP Tech

procedure dgWriteMemo(SourceDataSet: TDataSet;
FieldNum: Integer; var AsciiFile: System.Text);

var
ReadCount: Longint;

StringBuff: string;
BlobStream: TBlobStream;

begin
{ Create the blob stream for this field. }
BlobStream := TBlobStream.Create(TBlobField(

FDataSet.Fields[FieldNum]), bmRead);

SetLength(StringBuff, 1024);

try
repeat
{ Read some bytes from the memo. }
ReadCount := BlobStream.Read(StringBuff[1], 1024);

{ Write the characters to the delimited file. }
Write(AsciiFile, StringBuff);

until ReadCount = 0;
finally

BlobStream.Free;

end;
end;

Figure 7: The dgWriteMemo procedure writes the contents of a
memo field to an ASCII file.

{ Copy the source file to the destination file. }
procedure CopyFile(srcName, DestName: string);
var
buff: array[1..8192] of Char;

srcFile, destFile: File;

readCount, writeCount: Integer;

begin
{ Open the source file. }
AssignFile(srcFile, srcName);

Reset(srcFile, 1);

{ Open the destination file. }
AssignFile(destFile, destName);

Rewrite(destFile, 1);

{ Copy a buffer-full at a time until the end of the file
is reached, or a write error occurs. }

repeat
BlockRead(srcFile, buff, SizeOf(buff), readCount);

BlockWrite(destFile, buff, readCount, writeCount);

until (readCount = 0) or (writeCount < readCount);

{ Close the files. }
System.Close(srcFile);

System.Close(destFile);

end;

Figure 8: The CopyFile procedure.
Figure 7 shows the dgWriteMemo procedure, which writes
the contents of a memo field to the ASCII file. Because
memo fields can be very large, it may not be possible to fit
the entire contents of a memo in memory; therefore, memo
fields must be accessed using a BlobStream object. This code
begins by creating a BlobStream. The constructor for
TBlobStream takes two parameters; the first is the field
object for the memo field and the second is the mode — in
this case bmRead, because this routine only needs to read
the memo. The repeat loop reads the memo 1,024 bytes at a
time, and writes the data to the ASCII file. When the
BlobStream’s Read method returns zero for the number of
bytes read, the loop terminates and the BlobStream is freed.
Although it is not likely you would export really large
memos to an ASCII file, you can improve performance with
24 May 1998 Delphi Informant
large memos by reading and writing the data in much larger
blocks (for example 64KB instead of 1KB).

Working with Fixed-Length Files
Delphi’s untyped files can be opened in read, write, or
read-write mode, and can be randomly positioned to any
record in the file. What makes untyped files unique is that
you can read or write more than one fixed-length record at
a time, and reading and writing is done with special low-
level, high-performance procedures. The sample project
COPY.DPR uses untyped files to allow you to copy any
file, regardless of its type. The CopyFile procedure from this
example is shown in Figure 8.

The first thing you’ll notice about untyped files is that the Reset
procedure takes an optional second parameter. This parameter
procedure TdgDelimitedExport(DelimitedFile: string;
SourceDataSet: TDataSet);

var
AsciiFile: System.Text;

I: Integer;

LastField: Integer;

RecCount: Longint;

begin
{ Make sure the user specified a file name. }
if DelimitedFile = '' then
raise Exception.Create('No text file name.');

{ Make sure the DataSet property is set. }
if SourceDataSet = nil then
raise Exception.Create('DataSet is nil.');

{ Open the delimited file. }
AssignFile(AsciiFile, FDelimitedFile);

Rewrite(AsciiFile);

LastField := SourceDataSet.FieldCount - 1;

RecCount := 0;

while (not FDataSet.EOF) and
(RecCount < MaxRecords) do begin

Inc(RecCount);

for I := 0 to LastField do begin
{ If the field is a BLOB other than a memo skip it. }
if SourceDataSet.Fields[I].DataType in

[ftBlob, ftGraphic] then
Continue;

{ If the field is not numeric write the opening
delimiter character. }

if (SourceDataSet.Fields[I].DataType in
[ftString, ftMemo]) then

Write(AsciiFile, Delimiter); { Write field value. }
if SourceDataSet.Fields[I].DataType = ftMemo then

dgWriteMemo(SourceDataSet, I, AsciiFile)

else
Write(AsciiFile, SourceDataSet.Fields[I].AsString);

{ If the field type is not numeric write the closing
delimiter character. }

if (FDataSet.Fields[I].DataType in
[ftString, ftMemo]) then

Write(AsciiFile, Delimiter);

{ If this is not the last field write the separator
character. }

if I < LastField then
Write(AsciiFile, Separator);

end; { for }
{ Write carriage return/line feed at end of record. }
Writeln(AsciiFile, '');

FDataSet.Next;

end; { while }
System.Close(AsciiFile);

end;

Figure 6: This procedure takes a file name and a DataSet compo-
nent as parameters, then exports the DataSet contents to the file.

OP Tech

type
TAddress = record
name: array[1..35] of Char;

addr: array[1..35] of Char;

city: array[1..18] of Char;

state: array[1..2] of Char;

zip: array[1..10] of Char;

end;

Figure 9: The sample project FAST.DPR uses this record structure
to process a file of multi-field, fixed-length records.

procedure TForm1.CreateBtnClick(Sender: TObject);
const

MaxRecs = 100;

var
buff: array[1..MaxRecs] of TAddress;

addrFile: File;

i, count: Word;

begin
Assign(addrFile, 'addr.dat');

Rewrite(addrFile, SizeOf(TAddress));

{ Put 100 records into the buffer. }
for i := 1 to MaxRecs do

with buff[i] do begin
PasToArray('John Doe', name);

PasToArray('123 East Main Street', addr);

PasToArray('New York', city);

PasToArray('NY', state);

PasToArray('55555-5555', zip);

end;
{ Write 100 buffers (10,000 records). }
for i := 1 to 100 do
BlockWrite(addrFile, buff, MaxRecs, count);

System.Close(addrFile);

end;

Figure 10: The OnClick method for the Create button.

for i := 1 to MaxRecs do
with buff[i] do begin
PasToArray('John Doe', name);

PasToArray('123 East Main Street', addr);

PasToArray('New York', city);

PasToArray('NY', state);

PasToArray('55555-5555', zip);

end;

Figure 11: This for loop loads the buffer with 100 identical records.
is the record size in bytes. If you omit the record size, it defaults
to 128. The purpose of this program is to copy any file of any
type and size, so the record size is set to one byte, indicating
that the size of the copy will match the size of the original file.

The actual copying occurs in the repeat loop. You must use
BlockRead to read untyped files and BlockWrite to write to them.
BlockRead takes four parameters. The first is the file variable.
The second is the name of the variable or structure to use as a
buffer for the data. In this example, buff is an 8KB array of
Char. The third parameter is the number of records to read. The
number of records times the record size must be less than or
equal to the size of the buffer. The final parameter, readCount, is
set to the number of records actually read. This will always
equal the number of records to read (the third parameter),
except when you reach the end of the file, when it might be less.

In the call to BlockRead, the number of records to write is given
as SizeOf(buff). The SizeOf function will return the size in bytes
of any simple or structured variable. Since the record size is one
byte in this example, the size of the buffer array is equal to the
number of records to read. Always use SizeOf anywhere that your
Pascal code requires the size of a variable or structure, so the code
will still be correct if you change the size of the variable.

BlockWrite uses the same parameters as BlockRead, except
that the last parameter is set to the number of records
actually written. This will always equal the number of
characters to write (the third parameter) unless an error
25 May 1998 Delphi Informant
occurs. In this example, the number of records to write is
set to readCount, which is the number of records read.

The repeat loop continues until readCount equals zero, indi-
cating the end of a file, or until all the records cannot be writ-
ten, which means an error (e.g. a full disk) has occurred. The
last two statements close the source and destination files.

Using BlockRead and BlockWrite allows you to transfer many
records at one time, which also improves performance. To see
how fast untyped files are, try the sample project FAST.DPR.
This program lets you create and read a 10,000-record, 1MB
file. You’ll be astounded at the speed. After you write the file,
get out of Windows and reboot your computer to make sure
the file is not in your disk cache before you click the Read

button, so you will get an accurate demonstration of how
long it takes to read the file from disk.

This program also demonstrates how to process a file of
multi-field, fixed-length records, using the record structure
shown in Figure 9 as an example. This defines the TAddress
type with a total size of 100 bytes. The code in Figure 10 is
from the Create button’s OnClick method. This procedure
begins by declaring an array of 100 TAddress records to use as
the buffer. The AssignFile and Rewrite statements assign the
file name to the file variable and open the file with a record
size of SizeOf(TAddress). (Again, using SizeOf ensures that if
you change the structure of TAddress, the record size in the
Rewrite call will adjust automatically.) Notice the use of the
constant MaxRecs throughout this code to define the number
of records in the buffer. This also makes changes easier. If
you want to change the number of records in the buffer, all
you have to change is the constant declaration, and the rest
of the code takes care of itself.

The for loop shown in Figure 11 loads the buffer with 100
identical records. PasToArray is a custom procedure that
assigns the value of a Pascal string to a type Char array, using
the code in Figure 12. Notice the use of an open array para-
meter for the array. This lets you pass an array of any size.
The first for loop copies the contents of the string to the
array. The subscript of the array is computed as [i - 1] because
the subscript of an open array formal parameter is always
zero-based, regardless of how the actual parameter is defined.
The second for loop fills the remainder of the array elements
with spaces. The following for loop:

for i := 1 to 100 do
BlockWrite(addrFile, buff, MaxRecs, count);

OP Tech

{ Copy a Pascal String to a Char array. The array is padded
with blanks. }

procedure PasToArray(const str: string;
var arr: array of Char);

var
i: Word;

begin
{ Copy the string to the array. }
for i := 1 to Length(str) do

arr[i - 1] := str[i];

{ Fill the array with spaces in case the string is
shorter than the array. }

j := i + 1;

for i := j to High(arr) do
arr[i] := ' ';

end;

Figure 12: The PasToArray procedure.

procedure TForm1.ReadBtnClick(Sender: TObject);
const

MaxRecs = 500;

type
Tbuff = array[1..MaxRecs] of TAddress;

var
buff: ^Tbuff;

addrFile: File;

total, count: Word;

begin
try

New(buff);

except
on EOutOfMemory do Exit;

end;

try
Assign(addrFile, 'addr.dat');

Reset(addrFile, SizeOf(TAddress));

{ Read the file MaxRecs records at a time. }
total := 0;

repeat
count := 0;

BlockRead(addrFile, buff^, MaxRecs, count);

total := total + count;

until count = 0;
System.Close(addrFile);

ReadCount.Caption := IntToStr(total);

finally
Dispose(buff);

end;
end;

Figure 13: The Read button’s OnClick method.

type
TAddress = record
name: array[1..35] of Char;

addr: array[1..35] of Char;

city: array[1..18] of Char;

state: array[1..2] of Char;

zip: array[1..10] of Char;

delimiter: array[1..2] of Char;

end;

Figure 14: The revised type declaration for the record.
writes the buffer to disk 100 times to create the 10,000-record
test file. The Read button’s click method, shown in Figure 13,
is similar, except that it dynamically allocates a 500-record
buffer on the heap. Start by looking at the declarations in this
procedure, particularly the following statements:

const
MaxRecs = 500;

type
Tbuff = array[1..MaxRecs] of TAddress;

var
buff: ^Tbuff;

Here, the constant MaxRecs is set to 500, and a type, Tbuff, is
declared as an array of 500 TAddress records. The pointer vari-
able, buff, is declared as a pointer to type Tbuff. Because each
26 May 1998 Delphi Informant
TAddress record is 100 bytes, this array will consume 50KB of
memory. You need to allocate this large array on the heap by
calling the New procedure. The remaining code is enclosed in
a try..finally block to ensure the Dispose procedure will be
called to release the memory allocated by New, if an exception
(i.e. run-time error) occurs.

The next two statements open the file and the repeat loop
reads 500 records at a time, until it reaches the end of the file.
The repeat loop also counts the number of records read in
the variable total. After the file has been read, the statement:

ReadCount.Caption := IntToStr(total);

displays the number of records in the Label component,
ReadCount.

Another approach to reading and writing fixed-length files is to
use the Windows API calls OpenFile, ReadFile, and WriteFile.
For an example of these routines, see the CopyFile procedure in
the FilManEx.dpr sample program that ships with Delphi 3.

Working with Fixed-Length Text Files
While fixed-length files on mainframes and minicomputers don’t
have record delimiters, this is not the case in the PC world.
Many PC programs that produce fixed-length files append a car-
riage return/line feed pair to the end of each record, so the files
are actually text files, even though each record has a fixed length.

However, you can still read or write the file as an untyped
file, and you will probably want to because both typed and
untyped file processing is faster than text-file processing. The
FIXTEXT.DPR project is identical to FAST.DPR, except
that it creates a text file.

The revised type declaration for the record is shown in
Figure 14. The only change is to add the two-character
array-named delimiter to the end of the record to hold the
carriage return and line feed.

The only other change is in the Create button’s OnClick
method, shown in Figure 15. Here, the lines:

delimiter[1] := #13;

delimiter[2] := #10;

have been added to assign the carriage return character
(ASCII 13), and the line feed character (ASCII 10), to the

OP Tech

procedure TForm1.CreateBtnClick(Sender: TObject);
const

MaxRecs = 100;

var
buff: array[1..MaxRecs] of TAddress;

addrFile: File;

i, count: Word;

begin
Assign(addrFile, 'addr.dat');

Rewrite(addrFile, SizeOf(TAddress));

{ Put 100 records into the buffer. }
for i := 1 to MaxRecs do

with buff[i] do begin
PasToArray('John Doe', name);

PasToArray('123 East Main Street', addr);

PasToArray('New York', city);

PasToArray('NY', state);

PasToArray('55555-5555', zip);

delimiter[1] := #13;

delimiter[2] := #10;

end;
{ Write 100 buffers (10,000 records). }
for i := 1 to 100 do

BlockWrite(addrFile, buff, MaxRecs, count);

System.Close(addrFile);

end;

Figure 15: The Create button’s OnClick method, revised.
two elements of the delimiter array at the end of each record.
If you have an editor that can read large files, take a look at
ADDRESS.DAT after you run this program, and you’ll see
that each record appears as a separate line.

Conclusion
The BDE and Object Pascal have a variety of tools you can
use to get data into, or out of, your programs in the format
you need. Next month, we’ll discuss more options — includ-
ing the use of FileStream objects and bitwise operators — as
we continue to explore the features that make it possible to
import and export data in any format. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\MAY\DI9805BT.

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database pro-
gramming books, including Delphi: A Developer’s Guide and Creating Paradox
for Windows Applications. He is a Contributing Editor of Delphi Informant, a
member of Team Borland providing technical support on the Borland news-
groups, and has been a speaker at every Borland Developers Conference. He can
be reached at BillTodd@compuserve.com or (602) 802-0178.
27 May 1998 Delphi Informant

28 May 1998 Delphi Informant

Columns & Rows
Delphi / AS/400

By Bradley MacDonald
AS/400 Shortcut
Executing AS/400 Commands/Programs with TQuery

There are many ways to execute commands or programs on an AS/400 from
Delphi. The most common is to use a Remote Procedure Call (RPC) — the

method used by Delphi/400 and Light Lib/400. This usually requires software
on both the AS/400 and the client machine. However, if you’re using an ODBC
driver, you don’t always have access to an RPC API (Note: ClientAccess/400 has
both an ODBC driver and an RPC API).
Fortunately, there are many ways to run com-
mands or programs on the AS/400 without
using an RPC call. These include database
triggers, File Transfer Protocol (FTP), and the
Delphi Query component. We’ll briefly dis-
cuss database triggers and FTP; however, the
focus of this article is on running commands
and programs on the AS/400 using only the
standard Delphi Query component.

Database triggers. On the AS/400, it’s possi-
ble to set up a database trigger to call a high-
level language program instead of SQL. A file
could be set up with one column that will
hold the command to be run. A trigger
would then be set up for the file that would
run after update or insert. The trigger would
call a program that would read the new value
of the field and run that new value as a com-
mand on the AS/400 via the QCMDEXC
API. Delphi would have to perform an
update or insert on the trigger table using a
SQL statement to have the command in the
field run on the AS/400.

File Transfer Protocol. The AS/400 server
supports the FTP sub-command RCMD.
Using RCMD, you can run just about any
command on the AS/400, providing the
AS/400 is running the FTP server. You
could use the FTP component that ships
with Delphi to connect to the AS/400 and
run the command. The format of the sub-
command is:

quote rcmd <AS/400 command>

The quote sub-command sends the com-
mand to the server for processing, and is
used when your client doesn’t support a sub-
command the server supports. Here’s an
example FTP script:

open AS400IPNAME

user USERID PASSWORD

quote rcmd SNDMSG MSG(HELLO!) TOUSR(QSYSOPR)

quit

Let’s Get to It
The AS/400 has a utility for executing
AS/400 commands from inside high-level
languages, such as COBOL and RPG. The
utility is an API procedure named
QCMDEXC that takes two parameters: the
first is the command or program to be run

Columns & Rows
on the AS/400 as a string; the second is the length, in char-
acters, of the first parameter. The second parameter has a
unique requirement: It must be in the format of “10.5”
with full-zero fill. For example, a command that was 26
characters in length would have a second parameter of
0000000026.00000. So, if you wanted to send a “Hello!”
message to the system operator, the full command string
would look like:

CALL QSYS.QCMDEXC('SNDMSG MSG(Hello!) TOUSR(QSYSOPR)',

0000000033.00000)

This is the procedure we’ll use to run commands on the
AS/400. Note the use of the period to separate the QSYS
library from the QCMDEXC object. This isn’t standard
AS/400 syntax; standard syntax would use a forward slash
instead of a period. The reason for the change is the
ClientAccess/400 ODBC driver. It allows the developer to
choose whether they will follow the standard AS/400 syntax
and use a slash, or follow SQL syntax and use a period. The
ODBC driver defaults to the SQL syntax. This can become an
issue, so be sure all your client machines have the same
ODBC driver configuration.

The Query Component
The next step is to show how the Query component can be
used to execute QCMDEXC on the AS/400. The TQuery
class has a method called ExecSQL that issues the SQL prop-
erty to the server and doesn’t expect a result. To use this
method to issue the AS/400 command, you must assign the
API string to the SQL property, then call the ExecSQL
method. Because QCMDEXC is part of the operating system
API, it will run from almost any environment on the
AS/400. When the ExecSQL method is called, it sends the
SQL property to the AS/400 SQL environment. There, the
API is recognized and executed, not as a SQL statement, but
as an AS/400 command. By using this technique, you
should be able to issue commands on the AS/400 from
Delphi without having to use an RPC call or stored proce-
dure. (Using a stored procedure would require the full SQL
product to be installed on the AS/400.)

The main drawback of this method is that it isn’t possible to
receive results from the AS/400. Also, QCMDEXC is sensi-
tive to AS/400 commands with quotes in them. During my
tests, I couldn’t get an AS/400 command with quotes to
work. For example:

SNDMSG MSG('Hello to the AS/400') TOUSR(QSYSOPR)

wouldn’t work because of the quotes in the MSG parameter.

This means the developer won’t receive clear error mes-
sages when a command doesn’t run correctly on the
AS/400. The developer must dig into AS/400 job logs
which don’t seem to provide the same level of detail as
when the command is run natively on the AS/400. If the
command fails on the AS/400, it will generate a
DBEngineError exception in Delphi, which allows the
29 May 1998 Delphi Informant
One issue facing developers creating client/server programs
against existing AS/400 files is that of accessing multiple-
member files. It’s possible for an AS/400 file to contain
multiple members, where each member is almost a file unto
itself. Each member has the same structure (columns) as
well as other attributes, but contains different records
and/or data.

When you access a multiple-member file without specify-
ing which member, it accesses the member with the same
name as the file by default. This causes a problem with
SQL, which doesn’t support the AS/400 member specifica-
tion syntax. For a client/server program to access a different
member from the default, it must issue an AS/400 com-
mand named OVRDBF (Override Database File). This
command is used to redirect the I/O request from the
intended file/member to a different file/member.

The OVRDBF command affects only the AS/400 job under
which it is run. Depending on the method you use to exe-
cute the command on the AS/400, it may or may not have
an effect on your SQL query. For example, you might con-
nect to the AS/400 database using ODBC, and use a third-
party product for issuing remote commands. The ODBC
database connection would be one AS/400 job, and the
RPC command would be another, possibly requiring its
own logon ID and password. In this example, the
OVRDBF command would have no effect on the SQL
query because it’s being run in a different AS/400 job.
While this isn’t the case for all RPC connections, it’s some-
thing to be aware of.

An interesting solution to this problem is to use another
Query component to submit the OVRDBF command to
the AS/400. As long as both Query components are using
the same Database component, they’ll both run in the
same job on the AS/400.

The syntax for OVRDBF that allows you to access a differ-
ent member of the same file is:

OVRDBF FILE(X) TOFILE(Library/X) MBR(Y)

Using a Query component, the SQL property would look like:

CALL QSYS.QCMDEXC('OVRDBF FILE(X) TOFILE(Library/X) MBR(Y)',

0000000039.00000)

Where Library is the library that contains the file X. Then,
whenever you issue a SQL statement that references file X,
you’ll actually access the particular member Y of file X.
This will be in effect until you change it, or close and
reopen your database connection. You could even use the
same Query component to run the OVRDBF command,
then run the SQL query.

— Bradley MacDonald

Accessing Multiple-Member AS/400 Files

procedure TForm_AS400Command.Button_SubCmdClick(

Sender: TObject);

const
QUOTE = '''';

var
AS400Cmd, CmdLen, ParamTwo: string;
ZeroFill, I: Integer;

begin
{ Close the Query }
Query_AS400CMD.Close;

{ Create the Command to send to the AS/400 }
CmdLen := IntToStr(Length(Edit_AS400Cmd.Text));

ZeroFill := 10 - Length(CmdLen);

ParamTwo := '';

for i := 1 to ZeroFill do
ParamTwo := ParamTwo + '0';

ParamTwo := ParamTwo + CmdLen + '.00000';

AS400Cmd := 'CALL QSYS.QCMDEXC(' + QUOTE +

Trim(Edit_AS400Cmd.Text) + QUOTE + ',' +

ParamTwo +)';

Query_AS400Cmd.SQL.Clear;

Query_AS400CMD.SQL.Add(AS400Cmd);

{ Execute the command on the AS/400 }
try

Query_AS400CMD.ExecSQL;

except
ShowMessage('AS/400 Command Failed');

end;

end;

Figure 2: This procedure sends a command to the AS/400.

Figure 1: The demonstration form at design time.

Columns & Rows
developer to check to see if the command was run success-
fully. When the command is submitted to the AS/400, the
Delphi program waits until the AS/400 command has fin-
ished before continuing.

While this may be fine for small jobs, the developer should
encase the command to be run inside a SBMJOB command.
The SBMJOB will cause the command to be run in the
Batch subsystem on the AS/400 (by default), and return
control to the Delphi program immediately. The only draw-
back to this technique is that the Delphi program will not
know when the AS/400 program has completed — or if it
has completed successfully.

Putting It to Use
There are a variety of ways to put this technique to use. An
obvious one is to run reports and batch-oriented jobs on the
AS/400. It becomes fairly easy to set up a situation where a
user clicks a button to have Delphi submit a job to the
AS/400, e.g. print a report to a LAN printer close to the user’s
desk. While the report is being generated and printed, the
user is able to continue with other work.

One of the more beneficial ways of using this method would be
to access multi-member files. You could also use this technique to
30 May 1998 Delphi Informant
run the AS/400 OVRDBF command before running the SQL
SELECT against a file, both using the same Query component.

I’ve created a sample program (see Figures 1 and 2) that imple-
ments a command-line interface to the AS/400 using a Query
component and the ClientAccess/400 ODBC driver. The user
can enter the AS/400 command into the Edit component, and
hit the Submit Cmd button to send it to the AS/400. See the
sidebar “Accessing Multiple-Member AS/400 Files” for details.

Conclusion
This article is based on various discussion threads on Borland
newsgroups. The news server name is forums.borland.com,
specifically the borland.public.delphi.as400 newsgroup. If
you are using Delphi against the AS/400 server, I recommend
visiting this newsgroup. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\MAY\DI9805BM

Bradley MacDonald is a Technical Planner at the British Columbia Liquor
Distribution Branch, where he supports Delphi, AS/400, and Lotus Notes. He
can be reached on the Internet at Bradley_MacDonald@LDB.GOV.BC.CA or
Bradley_MacDonald@BC.Sympatico.CA.

31 May 1998 Delphi Informant

In Development
Delphi 1, 2, 3 / Windows / DOS

By Alan C. Moore, Ph.D.
Any Port in a Storm
Moving Applications to New Platforms

Few developers are moving applications from DOS to Windows these days.
Porting applications from 16-bit to 32-bit Windows, however, is common-

place. Recently, I began the large task of porting a major application from DOS
to 16- and 32-bit Windows. In this article, I’ll share some of my experiences
and tips. I’ll concentrate on the problems and solutions of writing for both ver-
sions of Windows. I’ll also discuss some of the more general issues of writing a
large-scale application for any platform.
My preferred method for writing the same
application for both Windows 3.x and
Windows 95/NT is “back porting.” This
involves two steps: Step one is writing all the
code in Delphi 3, since I have access to Raptor
and its powerful keyboard templates (see my
review in the October, 1997 Delphi Informant).
Step two is simply copying the .DPR, .RES,
.PAS, and .DCL files to a Delphi 1 subdirecto-
ry, and making the changes necessary for the
application to run in that version.

What are those changes? Let’s take a look.

The IfDef Shuffle
One major change you’ll need to make in
every .PAS file written in Delphi 3 is sub-
stituting Windows with WinTypes and
WinProcs in the uses clause. Of course, if
we’re porting from Delphi 1 up to Delphi
2 or 3, we don’t need to be concerned
about this; aliases in the newer version
would take care of this detail. In this case,
however, it gives us an opportunity to learn
about a useful technique for dual 16- and
32-bit development: a particular use of
conditional defines.

If you use the following series of statements
in your uses clause, it will compile in any
version of Delphi:

uses
{ $IfDef VER80 }

WinTypes, WinProcs,

{ $Else }
Windows,

{ $EndIf }
A somewhat comparable statement would be:

uses
{ $IfDef Win32 }

Windows,

{ $Else }
WinTypes, WinProcs,

{ $EndIf }

The first is based on different versions of
Delphi; the latter is based on different ver-
sions of Windows. Why version VER80 and
not VER10? This is for backward compatibili-
ty with Delphi’s predecessor, Turbo/Borland
Pascal. The last DOS version of
Turbo/Borland Pascal was version 7; the first
version of Delphi is considered version 8.
Delphi 2 is VER90 and Delphi 3 is VER100.

This particular conditional define is vital for
developing dual 16- and 32-bit code. For exam-
ple, if you want to take advantage of 32-bit
capabilities, and at the same time allow the code
to compile under Delphi 1, you would place
the 16-bit-specific code in its own block, and
the 32-bit code after the { $Else } statement.

What about when you must deal with code
specific to Delphi 1, 2, and 3? In that case,
you could use nested conditionals like this:

{ $IfDef VER80 }
Delphi 1 code

{ $Else }
{ $IfDef VER90 }

Delphi 2 code
{ $Else }

Delphi 3 code
{ $EndIf }

{ $EndIf }

Figure 1: Several menu choices and toolbits are disabled.

Figure 2: Creating a new course file automatically brings up the
configuration dialog box.

Figure 3: The second page is based on the data entered on the
first page.

Figure 4: The two rows correspond to the two grading factors;
there are five columns because three special grading factors
were selected.

In Development
The other problem with back porting is with the form defini-
tion (.DFM) file. Some properties such as the new Charset
aren’t found in Delphi 1. You can safely delete the properties by
opening the .DFM file in text mode, but usually you just need
to open the project in Delphi 1, close the project, and save the
changes. This lets Delphi delete any unsupported properties.

The Contemporary Look
Whether you’re developing in 16-bit, 32-bit, or both, you
generally want your applications to include the latest
Windows features — and the latest look. It’s important to
consider the components you’re going to use. If you choose
new Delphi 2/3 components, then try to back port, you’ll
have problems. Fortunately, there’s another way.

Often you can find the functionality — the look and feel — you
want by using third-party component libraries that support all
versions of Delphi. Two such libraries I relied upon heavily in
this application were TurboPower’s venerable Orpheus collection
of data-entry components and the Raize Components. Both pro-
vide tremendous functionality and modern visual qualities, and
both work just as well in Delphi 1 as they do in Delphi 3.

How to Proceed
Okay. We know the basic approach, and we’ve gathered our
tools. Where do we start, and how do we proceed? I prefer to
use a modified, top-down approach: Start with the most basic
design, working out the larger details first, and saving the
minute details for last. The approach is modified because
often, as I’m working with an interface object, such as a data-
entry screen, I work simultaneously with the data structure(s)
that screen is manipulating.
32 May 1998 Delphi Informant
It’s often been said that a good design at the beginning can
prevent problems in the long run; that well-conceived design
will lead directly to a well-designed menu system and/or tool-
bar. Having created this basic interface structure, you will
have a good sense of what tasks lie ahead. Most of the menu
items or toolbits will activate dialog boxes, which in turn will
trigger program events. However, as we add menu items and
toolbits, there’s one thing we should take into consideration:
communicating properly with the user.

Making It Foolproof
This point is obvious, and I’ve seen it written more than once:
Regardless of where we’re porting to or from, if selecting an
option is inappropriate, it should be disabled. That’s why con-
trols have an enable property. Let’s look at two examples.

Take a look at Figure 1. Note that when the application
starts, several menu choices and toolbits are disabled. It
makes no sense to save a file, or import data, if a file hasn’t
been opened. When you click on New, the configuration
dialog box comes up. Again, it makes sense to force the user
to add this configuration information immediately, because
nothing further can occur until they make certain decisions.
Figure 2 shows the configuration dialog box. When first dis-

Figure 5: A different look on the second page.

In Development
played, the second page is disabled; until the user decides
between a single grading system or multiple grading sys-
tems, it makes no sense to move to the second page. An
alternative would be to pre-select the single grading system
and give the user the option to change it. In Figure 3, every-
thing on the first page has been selected, and the second
page is now operational. The second page is constructed
based on the data on the first page. Let’s see how.

As Figure 4 shows, there are two rows because there are two grad-
ing factors; but there are five columns, because all three special
grading factors have been selected. What if we didn’t select any of
the special options, but increased the grade factors to four? Look
at Figure 5. Here, compiled under Delphi 1, we see a different
look on the second page. If you’re wondering what kind of table
control I’m using, it’s TOvcTable from TurboPower’s Orpheus
library. I like this control because it provides flexibility, in terms of
data entry fields (note the combo box field shown in Figure 4),
and the ability to easily add or hide columns and rows.

We’ve seen some of the beginning and middle stages of devel-
oping a 16/32-bit application. What occurs at the end?
33 May 1998 Delphi Informant
Wrapping Up
In the final stage, you’re concerned with enabling code, such
as file input/output, calculations, etc. During this stage, you
might want to take advantage of 32-bit features to optimize
code. For example, you may want to use threads to isolate
certain segments of code, taking advantage of multi-tasking.
Again, as we saw at the beginning of this article, you can
make excellent use of conditional defines, so you can compile
the same code in any Delphi version.

Before you turn your application over to beta testers, you’ll
want it to look as professional as possible. So, you may want
to develop a complete help system. There are differences in
help files from Windows 3.x to Windows 95/NT. As with
choosing component libraries, if you’re involved in dual
16/32-bit development, you’ll want a help-file-generating tool
that supports 16- and 32-bit Windows help file systems.

In this article, we’ve taken a look at some of the basic consid-
erations of writing for 16- and 32-bit Windows. We saw that
the initial design is crucial; that there are differences from one
Delphi version to another that we need to be aware of; and
that we can help ourselves greatly by shopping wisely for
third-party components that support both versions. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabilities
in applications, particularly sound and music. You can reach Alan on the Internet
at acmdoc@aol.com.

34 May 1998 Delphi Informant

Algorithms
Delphi / Algorithms

By Rod Stephens
Linked Lists
When the Data Is Too Dynamic for Arrays

Delphi arrays are ideal for storing simple lists of objects. If the list is small,
the size of the list is known, and the items in the list don’t move around,

an array is a perfect solution. However, if items must be frequently added and
removed — possibly from different positions in the list — using an array can be
difficult. This article describes an alternative: linked lists. These extremely flexi-
ble data structures allow a program to manage lists of unknown size quickly
and easily.
Cells
The items in a linked list are stored in data
structures called cells. Each cell is a record
that contains whatever data is needed by the
program. The cell also contains a pointer, or
link, to the next cell in the list. For example,
the following code defines a TCell data type
that contains a 20-character string. This code
also defines a PCell data type representing
pointers to cells:

type
PCell = ^TCell;

TCell = record
Value: string[20]; // The data.
NextCell: PCell; // The next cell in

the list.
end;

To connect one cell to another, a program
sets the NextCell pointer in the first cell to
point to the second. The program can con-
nect any number of cells to make a linked list
as long as it needs.

By convention, a program should set the
NextCell pointer in the last cell in a list to nil.
This allows the program to detect the end of
the list. For example, the following code dis-
plays the values stored in a linked list. The vari-
able top_cell points to the first cell in the list:

var
cell: PCell;

begin
cell := top_cell;

while (cell <> nil) do begin
ShowMessage(cell^.Value);

cell := cell^.NextCell;

end;

:

 Removing the top item from a linked list.

Algorithms
Linked lists are usually very dynamic, with new cells
added and removed as the program runs. For that
reason, most cells aren’t allocated statically using the
TCell type. Instead, a pointer to a cell is allocated,
then the new cell is created using the New proce-
dure. When a cell is no longer needed, its memory
is released by the Dispose procedure.

The following code creates and then destroys a
new cell:

var
new_cell: PCell;

begin
// Allocate a new cell.
New(new_cell);

// Free the new cell.
Dispose(new_cell);

It’s extremely important that a program dispose of a cell when
it’s removed from its linked list. Otherwise, if the program has
no variable pointing to the cell, its memory will no longer be
usable. The memory will be wasted until the program ends.

A program must also be certain it does not dispose of any
cells it’s still using. A program that accesses the fields
in a cell that has been disposed will crash.

Managing Linked Lists
Adding a cell at the top of a linked list is simple.
The program sets the new cell’s NextCell field to
point to the current top cell. It then updates the top
cell pointer so it points to the new cell.

For example, the following procedure adds a new
cell to the top of a linked list. The process is shown
graphically in Figure 1. The small box with an X in it
represents the nil pointer ending the list:

procedure AddToTop(var top_cell: PCell; value: string);
var

new_cell: PCell;

begin
// Create the new cell.
New(new_cell);

new_cell^.Value := value;

// Add the new cell to the list.
new_cell^.NextCell := top_cell;

top_cell := new_cell;

end;

Adding an item in the middle of a linked list is almost as easy
(see Figure 2). The following procedure adds a new cell after
the cell pointed to by after_me:

procedure AddAfter(after_me: PCell; value: string);
var

new_cell: PCell;

begin
// Create the new cell.
New(new_cell);

new_cell^.Value := value;

// Add the new cell to the list.
new_cell^.NextCell := after_me^.NextCell;

after_me^.NextCell := new_cell;

end;

Figure 1

Figure 3:

Figure 2:
35 May 1998 Delphi Informant
Removing a cell from the top of a linked list is also easy
(see Figure 3). The only interesting detail is that the pro-
gram should dispose of the removed cell if it will no
longer be needed:

procedure RemoveTop(var top_cell: PCell);

var
target: PCell;

begin
// Save a pointer to the cell.
target := top_cell;

// Remove the cell from the list.
top_cell := top_cell^.NextCell;

// Dispose of the removed cell.
Dispose(target);

end;

Finally, it is also easy to remove a cell from the middle of a
linked list. This operation is shown in the following code
and in Figure 4:

procedure RemoveAfter(after_me: PCell);

var
target: PCell;

begin
// Save a pointer to the cell.
target := after_me^.NextCell;

// Remove the cell from the list.
after_me^.NextCell := target^.NextCell;

// Dispose of the removed cell.
Dispose(target);

end;

Sentinels
You may have noticed that the code is almost the same for
adding an item at the beginning of a list or adding it in the

Adding an item to the top of a linked list.

Adding an item in the middle of a linked list.

Figure 5: The example program LListP managing a linked list.

Figure 6: The example program SortListP managing a sorted
linked list.

Figure 4: Removing an item from the middle of a linked list.

Algorithms
middle. Similarly, the code that removes an item from the top
or middle of the list is almost the same.

To allow a program to treat these cases identically, a pro-
gram can add a sentinel to the top of the list. The sentinel
is a cell that has its NextCell field pointing to the first
actual cell in the linked list. The sentinel is never released
and it never contains any real data. Its only purpose is to
allow the program to treat the first cell on the list (the one
after the sentinel) just like it treats cells in the middle of
the list.

Now to add a cell to the top of a list, the program adds the
item after the sentinel. To remove the first cell from the list,
the program removes the cell after the sentinel. The program
only needs the two routines AddAfter and RemoveAfter
instead of the four it needed before.

Because the sentinel is never deleted, many programs allocate
it explicitly using the TCell type. The following code shows
how a program might create a linked list using a sentinel:

var
sentinel: TCell;

...

// Initialize the empty list.
sentinel.NextCell := nil;
// Add some cells to the top of the list.
AddAfter(@sentinel, 'Cell 1');

AddAfter(@sentinel, 'Cell 2');

AddAfter(@sentinel, 'Cell 3');

The example program LListP, available for download (see end
of article for details) and shown in Figure 5, demonstrates a
linked list. Enter a string and click on an item in the list or the
sentinel. Then click the Insert After button to add the new item
after the one you selected. Pick an item or the sentinel and
click the Remove After button to remove the following item
from the list.

Sorted Lists
With just a little more work, a program can turn a linked
list into a sorted list. Instead of adding items at specified
positions in the list, the program searches through the list
to see where new items belong. The program searches until
it finds a cell with value greater than or equal to the new
value. It then inserts the new item before that cell. If the
new item has a value greater than every item currently in
the list, the program must be careful not to run past the
last item. When it moves past the last item, it will set its
pointer to nil. If it then tries to access the fields pointed to
by the nil pointer, it will crash.
36 May 1998 Delphi Informant
Constantly checking to see if it has reached the
end of the list slows the program down and
makes the code more complicated. The process
can be simplified by adding another sentinel at
the bottom of the list. The program should
give that sentinel a value greater than any that
could be added to the list. For text strings, the
sentinel could be given the value #255 because
all normal strings come alphabetically before

the character #255. Now when the program searches the
list, it will definitely find a cell with value greater than the
new item’s value. If there’s no such item in the list, the
bottom sentinel will stop the search. The program no
longer needs to check at each step to see if it has run off
the end of the list.

The example program SortListP (see Figure 6) manages a
sorted linked list. Enter a string and click the Insert button
to insert the item at its proper position in the list. Click on
an item or the top sentinel, and click the Remove After but-
ton to remove the following item from the list.

Other Linked Structures
The TCell structure described earlier contains a single
NextCell pointer. There’s no reason it could not contain
other pointers as well.

Algorithms
For example, the
cells in a doubly-
linked list contain
an additional
PrevCell pointer
indicating the pre-
vious cell in the
list. Using the
NextCell and
PrevCell pointers, a
program can move
forward and back-
ward through the
list. This makes
operations like
adding or removing
a cell before anoth-
er cell easy.

This idea can be extended to support other orderings. For
example, a list of employees might contain sorted links order-
ing employees by name or by employee ID. The employee
cells might be declared like this:

type
PEmpCell = ^TEmPEmpCell;

TEmPEmpCell = record
LastName: string[20];
FirstName: string[20];
ID: Longint;

NextName: PEmpCell; // Next cell in name order.
NextID: PEmpCell; // Next cell in ID order.

end;

Each sequence of links that gives the cells a particular order-
ing is called a thread. A list made up of this kind of cell is
called a threaded linked list. When a program adds a new
employee to a threaded linked list, it must place the record in
the proper position in each thread.

Figure 7: The example program ThreadP
managing a threaded linked list.
37 May 1998 Delphi Informant
The example program ThreadP (see Figure 7) manages a
small employee list. If the user clicks on the By Name radio
button, the program lists the employees ordered by last name.
Likewise, if the user selects By ID, the program lists the
employees ordered by ID.

A program can add other pointers to cells to create even
more elaborate data structures. Using cells with LeftChild
and RightChild pointers, a program can build binary trees.
Using still more pointers, a program can build trees of higher
degree, graphs, and networks. Using pointers makes it easy
to add, remove, and rearrange cells in all these structures.

Conclusion
Arrays are fine for storing small lists of fixed size that are sel-
dom rearranged. But when the data changes frequently, or
must often be reorganized, linked lists and other linked struc-
tures offer much greater flexibility. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\MAY\DI9805RS.

Rod Stephens is the author of several books, including Custom Controls Library
[John Wiley & Sons, 1998] and Visual Basic Algorithms [John Wiley & Sons,
1998]. He also writes algorithm columns in Visual Basic Developer and
Microsoft Office & Visual Basic for Applications Developer. You can reach him
at RodStephens@compuserve.com, or see what else he’s up to at
http://www.vb-helper.com.

http://www.vb-helper.com

New & Used

By Alan C. Moore, Ph.D.

Figure 1: HelpScribble’s IDE wit

38 May 1998 Delphi Informant
HelpScribble

As I am sure you’re aware, there’s no shortage of Help-file tools for
Windows developers. Several, which include WYSIWYG and all of the “bells

and whistles,” come with an equally impressive price tag — in some cases two
hundred dollars or more. Interestingly enough, you can spend that much
money and still not get support for context-sensitive help in Delphi components.
The product I’ll be describing in this review, HelpScribble from JG Software, may
not be as fancy as some of the products you’ve heard so much about. But it does
get the job done, and it has excellent support for Delphi and its components.
Figure 1 shows the main HelpScribble win-
dow in an educational application. Some
might call this user interface “busy.” Once
you get used to it, however, I think you’ll
find all the functionality you need is right at
your fingertips. It includes five toolbars
(ProjectBar, TopicBar, FootnoteBar, TextBar,
Help Toolbar), a Ruler, a Topic Grid, and an
Error Log window. Most of the options are
available both from the toolbars and from the
menu. Best of all, you can hide or show any
of the toolbars, the Ruler, or Error Log win-
dow. For contrast, take a look at Figure 2,
which shows the Help file (from the same
educational application) being edited, but
without the secondary windows or toolbars.
h all toolbars present.
In addition, there are four separate editors for
browse sequences, contents files (32-bit
Windows only), Segmented HyperGraphics
(SHG), and windows (main and secondary).

HelpScribble at Work
As in Delphi, the central metaphor in
HelpScribble is the Project. From the Project

menu you can create new Help projects, as
well as save, save as, open, or re-open them.
You can import or export Help files between
HelpScribble’s native format and the tradi-
tional Windows source types (.RTF and
.HPJ). You can compile or test a Help file
you’re working on, and set various program
options. If you’re producing a manual, and
want to include the same language as in the
Help file, you can produce a Flat Manual (a
text file in which all the special footnotes,
links and Help file-specific information has
been removed). If needed, you can even
change the numbering of topics.

Creating a new topic couldn’t be more sim-
ple: Just select Topic | New, click the green
“plus” tool, or hit 4. If you type the title of
the topic in the New Topic combo box, it will
automatically appear in the main edit win-
dow. (I like to copy the topic’s name immedi-
ately to the Keywords edit box, directly below
and to the left, right above the font name
combo box.) Anything you type in the
Keywords edit box will appear immediately in
the Topic Grid, shown in the left column.

New & Used
The next step is to separate the scrolling from the non-
scrolling (Title) region. Simply move the cursor to the line
underneath the title in the edit window and click on the
KEEPN tool and HelpScribble inserts the divider for you.
Now you’re ready to write your Help text. Often you’ll use
bullets to list topics (to which you can jump), features, or
similar groups of information. If you click on the bullet
tool, a bullet will be inserted whenever you hit R to
begin a new line.

Footnotes and Links
Writing and formatting text is part of creating an effective
Help file. As with other hypertext systems, Windows Help
files rely on links to enable the user to quickly find infor-
mation, jumping from one page to another. It’s extremely
simple to add links to a Help file with HelpScribble.
Simply select the word or phrase that will identify the link,
then click on one of the link tools. If you select one of the
tools without selecting text, HelpScribble will insert the
title of the topic you want to link to into the Help text and
use that as the hotspot text. You can create regular links,
popup links, or target links to special areas of the Help file,
such as a glossary. You can also create special links to other
Figure 2: HelpScribble’s simplified user interface.

Figure 3: HelpScribble’s SHG Editor.

39 May 1998 Delphi Informant
Help files. If you’re working in 32-bit Windows, you can
create links to Internet pages or e-mail applications.

The term “footnote” is a carryover from the old days of
writing Help source files as .RTF files when you placed a
topic’s ID, title, and other special information in actual
footnotes that would be interpreted by the Help file com-
piler. A more appropriate term for this information, and
one familiar to Delphi developers, is property. As we’ve
seen, you can add just about all of the information about a
topic from HelpScribble’s IDE. However, you can also edit
a topic’s properties in the Topic Footnotes dialog box.
HelpScribble automatically assigns the context string to a
default value so it can display topic titles instead of con-
text strings when you pick a topic to which to link. Some
of the properties listed here, such as browse sequences, are
not always used; others, such as the “A” footnote, are spe-
cific to WinHelp 4.0 and will be discussed later.

Special Edit Windows
As previously mentioned, HelpScribble has four specialized
edit windows, a Browse Sequence Editor, a Contents
Editor, a Segmented HyperGraphics (SHG) Editor, and a

Window Editor. First, let’s start with the
Window Editor.

HelpScribble’s Window Editor allows you to set
various properties for the main window, or for
any secondary windows you may create. You can
set the dimensions of the window, its caption, its
behavior, and its colors (non-scrolling title
region and main help area). If you want to add
graphics with hotspots to your application, the
SHG Editor is particularly useful. Typically, you
take a screenshot of a dialog box and then associ-
ate various regions with Help tips concerning the
data entered there. Figure 3 shows an example
from the previous education application. There
are menu items and tools for creating, opening,
and saving .SHG files. You can create hotspots;
for each hot-spot on the graphic, you can define
its type (link, popup link, or macro), links, and

location. However, I recommend setting the location visu-
ally, rather than with these spin controls.

Sometimes you want to create a browse sequence in your
Help file, arranging many of the screens in a certain order to
lead your users by the hand in a tutorial. With HelpScribble’s
Browse Sequence Editor, you simply move topics from an
available topics list to a browse-sequence list.

Macro Magic and More
With HelpScribble you have easy access to WinHelp
macros and editing macros. WinHelp macros are used
for various operations, including jumps to other Help files
and executing applications. With HelpScribble’s Macro
Editor, you can associate WinHelp macros with buttons
that you place in your file or hotspots on an SHG page.
On the other hand, TextMacros are a special feature of

Figure 4: The HelpScribble Help

Figure 5: The HelpScribble Con

40 May 1998 Delphi Informant

HelpScribble is a powerful tool for
creating Windows Help files.
Although it is a 32-bit application, it
can create Windows 3.1 or
Windows 95 Help files. It includes
several editors for working with SHG
files, WinHelp macros, contents
(.CNT) files, and windows. Its power,
ease-of-use, and integration into
Delphi make it a logical choice for
Delphi developers.

JG Software
Jan Goyvaerts
Lerrekensstraat 5
2220 Heist-op-den-Berg
Belgium

Web Site: http://www.tornado.-
be/~johnfg/helpscr.html
E-Mail: johnfg@tornado.be
Price: US$79. Complete registration
details can be found in
HelpScribble’s online Help.

New & UsedNew & Used
HelpScribble you can use
to store text properties.
This makes it easy to
enforce a consistent text
style throughout your Help
file. And the good news
doesn’t stop here: There
are other tools that make
creating a Help file much
easier.

Bookmarking topics makes
it much easier to work
with a large Help file.
Topics are easily book-
marked by right-clicking
on them and selecting
“bookmark.” After that,
they’re shown in red in the
Topic Grid (again, see
Figure 1). After you set
bookmarks, you have two
Context Editor.

tents Editor.
ways of navigating the topics in your Help file: sequential-
ly by ID number or by bookmarks.

Support for Delphi and WinHelp 4.0
HelpScribble’s support for Delphi is marvelous. If you
write custom components, you’ll find its ability to scan a
component unit and create a context Help file from the
comments in that file extremely helpful. (I wish it were
possible to do this with application units as well.) Also, the
HelpContext Editor (see Figure 4) that comes with
HelpScribble makes it a snap to add context-sensitive
Help to your application. Once you’ve installed it, just
double-click on any HelpContext property in the Object
Inspector and the editor automatically comes up, establish-
ing a link with HelpScribble. Notice in the figure that all
of the available topics are in the listbox at the right. All you
have to do is select one of these, or create a new one, to
integrate the Help topic with the proper control in Delphi.

HelpScribble also includes full support for the new capa-
bilities of WinHelp 4.0. For example, it includes all the
tools you need to create a contents file, including a

Contents Editor (see Figure 5). There’s also sup-
port for the new “A” footnotes (keywords) that
allows you to create lists of related topics. You
can also add buttons (associated with macros) to
your Help file.

An Ideal Help Tool for Delphi
I’m satisfied and have no plans to look any further
for a Help-file tool. Once I became familiar with
the interface, I was able to quickly build the Help
system for the application I’m developing. As I
learned more about the subtle aspects, I was able to
go back and make enhancements. For example,
while HelpScribble may not be WYSIWYG, its
ruler and font tools allow a great deal of formatting
that approach WYSIWYG. Needless to say, I rec-
ommend this product highly. Best of all, it’s share-
ware, so you can download the shareware version
(which just adds a little note to all your Help top-
ics) and try it out before you buy it. ∆

Alan Moore is a Professor of Music at Kentucky State University,
specializing in music composition and music theory. He has been
developing education-related applications with the Borland lan-
guages for more than 10 years. He has published a number of
articles in various technical journals. Using Delphi, he specializes
in writing custom components and implementing multimedia
capabilities in applications, particularly sound and music. You can
reach Alan on the Internet at acmdoc@aol.com.

http://www.tornado.be/~johnfg/helpscr.html
http://www.tornado.be/~johnfg/helpscr.html

41 May 1998 Delphi Informant

New & Used

By Cary Jensen, Ph.D.

Figure 1: All features of
development environmen
DotHLP
A Little Help with Your Help from Auric Visions Ltd.

Adding online Help to your application is a necessary step in delivering a
professional, final product. As you’ve learned from some of the articles in this

issue, using the contents of Windows Help files (.HLP) from within a Delphi appli-
cation is almost trivially easy. It’s the creation of these files that is often tedious.
D
t

The actual task of writing the text of a useful
Help system aside, the process of creating
.HLP files is one that most developers would
care to avoid. Just ask anyone who’s ever had
to resort to creating .RTF (rich text format)
files with the necessary footnotes for manual
compilation using HC31.EXE or HCW.EXE.
otHLP are available through an integrated
.

Help Is Here
Fortunately, there are a number of third-party
tools available that simplify the process of
creating .HLP files. One of these, DotHLP
from Auric Visions Ltd., is notable for its
ease-of-use, wealth of features, and reasonable
price — a combination that makes this utility
worthy of consideration by anyone faced with
the prospect of writing a Help system.

The features of DotHLP are accessed through
the easy-to-use interface shown in Figure 1.
The individual pages of the Help system are
written using DotHLP’s integrated editor,
and are stored in Paradox tables. When you
generate a .HLP file, DotHLP reads the
information it has stored, generates the neces-
sary .RTF, .HPJ (help project), and .CNT
(content) files, then compiles them using the
Windows Help compiler.

DotHLP permits you to create Help systems
as sophisticated as you need. For example,
your Help pages can include numerous fonts
(DotHLP includes a tool for managing
fonts), font sizes and colors, page-background

New & Used
colors, embedded graphics, hyperlink jumps and hypertext
popups, browse-sequence definitions, embedded multimedia
(Windows 95 and Windows NT only), macros, and more. In
fact, DotHLP simplifies the process of adding almost any fea-
ture supported by the Windows Help compiler.

Each .HLP file in DotHLP is defined by a project that corre-
sponds to the Paradox table in which the Help pages are
stored. Within a project, each page is stored as a single record.
That DotHLP stores your Help projects in a database affords
you a level of flexibility that would be difficult or impossible
to achieve if the Help were stored as straight .RTF. For exam-
ple, you can easily copy an entire project, then add or remove
individual pages. Likewise, pages can effortlessly be copied
from one project to another.

DotHLP Features
There are many other features of DotHLP; here are some of
its highlights:

Creates both 16- and 32-bit Help files, with the look of
either Windows 3.1 or Windows 95, from a single project
source.
Has a built-in spell checker.
In addition to generating .HLP files, projects can be out-
put in .RTF format. You can use this output as the basis
for written documentation.
Existing .TXT and .RTF files can be inserted into a pro-
ject.
Includes a New Project Wizard to help you start a new
project.
Includes a number of demonstration projects so that you
can see how to implement its various features.
Online Help is extensive and informative.
Registered users can download product updates from the
Web. Auric Visions Ltd. has been very good about adding
features and correcting problems identified by users.
The integrated environment permits you to test hypertext
jumps and popups without compiling the project.
Existing projects can be used as templates for new pro-
jects, so you can easily duplicate desirable project options.
Includes Microsoft’s SHED program, which permits you
to define hypertext popup regions on a 16-color bitmap
you want to embed in your Help file.

There are two versions of DotHLP: Standard and
Professional. Aside from the features shared by both, the
Professional edition permits you to inherit the pages of one
project from two or more other projects, generate HTML
files from your projects, de-compile an existing .HLP file, and
insert the results into a DotHLP project.

With HTML generation, you can quickly turn a Help project
into a series of HTML pages. These can be a quick and easy
source for a Web-based Help system for your customers. And
the de-compilation feature permits you to enhance or modify
a Help system for which you have lost the original .RTF files.

The inheritance feature of DotHLP Professional is particularly
useful if you need to create many different .HLP files. This fea-
42 May 1998 Delphi Informant
ture permits you to maintain
one project linked to two or
more projects that need to
share the same set of pages. For
example, all your applications
may need a set of Help pages
that describe how to purchase
upgrades and obtain technical
support. These can be stored in
a separate project, and can be
inherited by those projects that
need to include this informa-
tion. If you need to update this
shared information, you merely
update that one project. Re-
compiling the .HLP files that
inherit this information auto-
matically inserts these changes.

As a Delphi developer, you’ll
particularly enjoy the fact that
the author of DotHLP is a
Delphi developer. (DotHLP
was written in Delphi.) The
extensive .HLP files that accompany DotHLP contain numer-
ous tips and code examples that you can easily use in your
Delphi applications. In addition, the online Help includes
details for Visual Basic programmers.

Conclusion
As you can tell, I like DotHLP a lot, but it does have its share
of problems. For example, the existing Help de-compilation
didn’t work correctly with .HLP files I had previously created
the old-fashioned way. It did a good job, but I needed to do
some fine-tuning once the .HLP files were imported. In par-
ticular, I had to delete and re-insert many of my links.
Likewise, both the .RTF and HTML export features correctly
generated about 90 percent of the material. The remainder
had to be adjusted manually. In fact, the DotHLP documen-
tation warns you of this, pointing out that you’ll likely have
to make final adjustments following an export. Also, like any
sophisticated application, using DotHLP takes a little getting
used to. While you can quickly generate a simple .HLP file,
more complex tasks have a learning curve. Nonetheless,
DotHLP is definitely worth a look.

Now for the best part: DotHLP is very affordable. You can regis-
ter the Standard edition for US$99, and the Professional edition
for US$149. At these prices, it’s really hard to go wrong. ∆

DotHLP is a full-featured, integrat-
ed Help generation system written
entirely in Delphi. It’s easy to use
and remarkably affordable. With
the exception of actually having to
write the Help text, DotHLP takes
the sting out of having to produce
an application’s Help file.

Auric Visions Ltd.
4 All Saints Cottages
Turners Hill Road
West Sussex, RH10 4HA
UK
Phone: US distributor,
ComponentSource: (888) 850-9911
E-Mail: support@AuricVisions.com
Web Site:
http://www.AuricVisions.com or
http://www.ComponentSource.com
Price: Standard edition, US$99;
Professional edition, US$149;
upgrade to Professional edition,
US$49. A trial version can be
downloaded from Auric Visions
Ltd.’s Web site.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is author of more than a dozen books, including
Delphi in Depth [Osborne McGraw-Hill, 1996]. He is also a Contributing Editor
of Delphi Informant, and was a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://idt.net/~jdsi. You can also reach Jensen Data Systems at
(281) 359-3311, or via e-mail at cjensen@compuserve.com.

http://idt.net/~jdsi

New & Used

By Gary Entsminger

Figure 1: Integrating Mic

43 May 1998 Delphi Informant
WinHelp Office 5.0
A Great Way to Create Help Systems

So, you’ve just built your latest (and greatest) Delphi application, and you’re
ready to sail it out to the world, where it will compete with another half-

dozen, similar-looking packages. Yours is better, swifter, or niftier in some way or
other, but how can you make it stand out from the pack? One way, which can
save you money and help you organize your documentation, is to develop a first-
class online Help system. Developed properly, this system becomes a hard copy
manual you can print, and a hypertext document users can navigate online.
r

We’re all familiar with these Help systems.
They come with the best software packages
(Delphi, for example), but they’re often per-
ceived by programmers and developers as an
adjunct to the application, rather than as an
integral part. In the past, there was some-
thing to the argument that Help systems
were too difficult and time-consuming to
build. Therefore, most of us were forgiven if
our commentary was weak. This is no longer
the case, however, and forgiveness is rare:
Users now expect first-rate documentation.
osoft Word and RoboHELP.
New tools such as WinHelp Office 5.0 make
creating a Help system as convenient as creat-
ing an outline or other organized document.
When you create a Help system with WinHelp
Office, you use a familiar tool — the word
processor — to create, edit, and format the text
for your online Help system. Most of this text
resides in Topics, the basic units of a Help sys-
tem. Any time you select a specific piece of
information to view within a Help system,
you’re selecting a topic. Each topic resides
within one or more document pages. WinHelp
Office is integrated with Microsoft Word, so if
you already know how to use Word and
Windows Explorer, you already know how to
use the basic tools in WinHelp Office.

The recently-released WinHelp Office 5.0
consists of RoboHELP 5.0, RoboHTML 1.0,
a Help Video Kit, and 15 additional WinHelp
and HTML Help-authoring tools. You can use
these tools individually, or in combination, to
create almost any Help system you can imag-
ine, including ones for your Web site.

Into the World of RoboHELP
When you fire up RoboHELP, it runs an
instance of Word, then integrates itself
with Word. RoboHELP accomplishes this
by adding menu items for RoboHELP
Tools to the Word menus, and creating a
RoboHELP Tools Palette and a RoboHELP
Explorer Toolbar that are accessible directly
from Word. Figure 1 shows the integration
of Word and RoboHELP. The RoboHELP
Tools Palette is used to add topics and

Figure 3: RoboHELP launches itself in Word, integrates with Word, then opens the
RoboHELP Explorer.

: Creating a new topic in the New Topic dialog box.

New & Used
jumps (or links)
to topics, and to
compile and run
your Help sys-
tem. The
RoboHELP
Toolbar is used
to interact with

the RoboHELP Explorer. You can turn the Toolbar and
Tools Palette off when you don’t need them.

After you’ve created a rough draft of your Help system (one
or more topics), you make and compile it. Compiling a
RoboHELP system is fast, even by Delphi standards. For
example, the 60-page Help system I recently built with
RoboHELP for a null-modeling application that I developed
in Delphi compiles in seconds. (Note: If you want to peruse
my Help system or use the modeling application, called
EcoSim, you can download it, free of charge, from
http://www.uvm.edu/~biology/Faculty/EcoSim. The Help
system that’s included with EcoSim is the complete hypertext
manual for the application, and demonstrates most of the
techniques mentioned in this review.)

The RoboHELP Explorer
The RoboHELP Explorer simplifies the organization
of a Help system by allowing you to quickly view
any object within the various hierarchies of the Help
system. For example, the RoboHELP Explorer in
Project View displays Topics, Project, Graphics and

Multimedia, Dependencies, and Single Source hierar-
chies for the active Help system (see Figure 2).

The Index View shows the Keyword links for
Topics, the TOC View shows the Table of
Contents (a hierarchical View of Topics within
Books), and so on. To view any object, navigate to
it with the RoboHELP Explorer. Or, if you want
to find a specific topic in a large system, you can
search for it with the Find Topic menu command.

Figure 2: Navigate to any object via the
RoboHELP Explorer.

Figure 4
44 May 1998 Delphi Informant
Help topics have advantages we now associate with online
media. Unlike the pages of hard-copy manuals, Help topics can
be created, organized, stored, and accessed in any order. In addi-
tion, if you use a sophisticated tool such as WinHelp Office,
you can create a Web site directly from a compiled RoboHELP
project. The Help to HTML Wizard (one of the WinHelp
Office tools) walks you through the process, using your contents
file to organize the Web site’s contents; it steps you through the
creation of Home Page, Index Page, and so on.

A Quick Step-Through
The following steps will give you a feel for how you might
use RoboHELP to develop your own Delphi Help system:
1) After you’ve installed WinHelp Office from a CD-ROM

(or disks), click the RoboHELP icon to create or open an
existing Help Project. RoboHELP keeps track of the pro-
jects you’re working on, and always displays a project list
when you ask to create or open a new project.

2) If you select New Project, the New Project dialog box opens,
showing you many WinHelp project types (including Delphi
Help). After you’ve selected a type, RoboHELP launches an
instance of Word, integrates itself within Word, and opens

http://www.uvm.edu/~biology/Faculty/EcoSim

New & Used
the RoboHELP Explorer (see Figure 3). Note that I’ve
reduced the size of the RoboHELP Explorer and Word win-
dows for this article. Typically, you would expand both win-
dows to share your computer screen.

3) You now proceed to create and edit topics, format text, and
insert graphics and hypertext links using the integrated
Word/RoboHELP system. For example, click the New Topic

button to create a new topic. The New Topic dialog box
opens (see Figure 4). You can also click the New Jump but-
ton to create a hypertext link to another topic. If other top-
ics exist, RoboHELP shows you a list of them from which
to choose. If no other topics exist, the Create Hypertext
Jump to Help Topic dialog box opens that allows you to cre-
ate a new topic, which is then linked. The Index or Table of
Contents are created similarly. You create and organize a
Table of Contents by creating New Books and organizing
topics within books by dragging them from a topic list. The
Index is created and organized by creating Keywords and
associating them to Topics. You create the Table of Contents
as you go, then use the Table of Contents to help you orga-
nize topics. But you can modify the Table of Contents, the
Keyword lists, or Topics at any time. And if your Help sys-
tem becomes too large for a single Word file, you can sepa-
rate it into files that RoboHELP helps you manage.

4) When you’re ready to compile and test your Help system,
you compile and run it by clicking the Run button.

The WinHelp Office 5.0 package consists of several other use-
ful tools, including an excellent screen capture utility, an image
45 May 1998 Delphi Informant
editor, a graphics converter, an
.RTF converter, multimedia
support, and support for all
Windows 95 and NT 4.0
macros. You can also create
context-sensitive Help systems
and compile topics one at a
time for testing.

Conclusion
In short, creating every aspect
of a Help system with
RoboHELP is easy, and ver-
sion 5.0 is an improvement
from previous versions. My
only complaint is a surprising
one: The printed WinHelp
Office documentation is better
than the online Help system
that Blue Sky Software ships
with WinHelp Office. Go fig-
ure. Otherwise, thumbs up
Blue Sky Software! ∆
Gary Entsminger is a writer, programmer, and computing consultant. His books
include The Way of Delphi [Prentice Hall, 1996], The Way of Java [Prentice
Hall, 1997], and The Tao of Objects, 2nd Ed. [M&T Books, 1995]. He can be
reached at gentsmin@together.net.
WinHelp Office 5.0 makes creating
Help systems as convenient as creating
an outline, or other organized docu-
ment. It consists of RoboHELP 5.0,
RoboHTML 1.0, a Help Video Kit, and
15 additional WinHelp and HTML Help-
authoring tools that can be used indi-
vidually, or in combination, to create
almost any Help system you can imag-
ine, even for a Web site. Installation
requirements include Windows 95 or
NT 4.0, Word 7 or Word 97, 16MB
RAM, and 33MB of free disk space.

Blue Sky Software
7777 Fay Ave., Suite 201
La Jolla, CA 92037
Phone: (800) 459-2356 or
(619) 459-6365
Fax: (619) 459-6366
E-Mail: info@blue-sky.com
Web Site: http://www.blue-sky.com
Price: US$699 as a complete package;
components can also be purchased
separately. A preview version of
RoboHELP 1.0 is free for downloading.

http://www.blue-sky.com

From the Trenches
Directions / Commentary
Learning to Share

The problem of shared code libraries has been around since the dawn of computing. The typical example
used to illustrate why a shared code library should be used is the C run-time library. In this scenario,

every time a programmer wrote a program in C, they used the C run-time library. Therefore, each applica-
tion would have its own copy of the library compiled right into the executable.
One solution to this problem was the
introduction of DLLs in Windows. No
longer was it necessary to have multiple
copies of the C run-time library lying
around your disk, taking up precious disk
space. Furthermore, running multiple
applications simultaneously that relied on
the run-time library wouldn’t require the
entire library to be loaded in memory
multiple times. This ushered in a new era
of computing, where third-party compa-
nies sell libraries to you, the programmer,
so you don’t have to program something
that’s already been done.

Lately, there has been much discussion
about where applications should place
shared DLLs. The two most accepted
places for third-party DLLs are the
\Windows\System directory or in a pri-
vate directory. Due to paranoia in the
software industry that a newer version
of a DLL may introduce problems with
existing applications, some recent publi-
cations have even gone so far as to rec-
ommend using private directories for all
non-system DLLs. Each argument has
its merits, but to help protect yourself
from latent problems, you should place
these files in the \System directory.

But what’s “third party?” By the very
definition of this phrase, we can define
our argument. Is third-party supposed
to be anything that isn’t part of the core
Windows operating system? If so, that
means Microsoft Office, Visual C++
run-time libraries, Internet Explorer,
and even Delphi run-time packages
should all be in their own private direc-
tories. If we say that certain applications
should be exempt from the third-party
definition, then who will decide which
46 May 1998 Delphi Informant
applications are considered third-party?
On the other hand, if every application
should put its DLLs in a private direc-
tory, then why use DLLs at all? The
same thing could be accomplished by
linking the code straight into the EXE.

Imagine the cry of outraged users
because they don’t have a central repos-
itory to ease the burden on their disk
space, memory requirements, and sys-
tem maintenance issues. We already
have that feature: It’s called the \System
directory. To blame the strategy because
some applications and third-party DLL
vendors can’t play by the rules seems to
not recognize the central need for this
strategy to exist. After all, even the
good old DOS and UNIX machines
presented users with configuration
problems. Some of these problems even
related to having improper and con-
flicting versions of software modules
(e.g. TSRs and device drivers) loaded at
the same time.

Lastly, consider this scenario: Vendor A
writes an application that uses a fairly
common third-party DLL. They sub-
scribe to the theory that the DLL
belongs in a private directory. Now you
come along and write an application
that uses the same DLL. No matter
what strategy you believe in, there’s
already a very large chance for a defect
to surface in your program. How? If the
user that purchased both software pack-
ages runs Application A and then runs
your application, you’ll be using the
copy of the DLL in Application A’s
directory! If your application relies on a
newer version of the DLL than the one
provided by Vendor A, Vendor A can
make your application crash. You might
say, “This will never happen to me,”
but the truth is, it happens all the time.

We live, work, and play in a multi-
tasking, multi-application operating
system. As developers, we need to
ensure the highest level of probability
that our applications won’t fail. As soon
as you try to outsmart the way things are
supposed to work, you’ll find yourself
engaged in an uphill battle that you’ll
eventually lose. It’s far better to fully
understand the scope of the problem —
and how you might help alleviate it —
rather than try to insulate yourself in a
corner of the operating system.

If anything, this should be a call to
action for:

third-party developers to be respon-
sible in releasing new versions that
are 100 percent compatible with
previous versions;
installation application companies
to find an effective work-around;
Microsoft to devise and implement
a new strategy that provides the
benefits of DLLs without the cur-
rent problems; and
application developers to play by
the rules. ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact him
at http://www.execpc.com/~dmiser.

http://www.execpc.com/~dmiser

File | New
Directions / Commentary
Working with AnsiStrings

Working with strings is an unglamorous necessity. Fortunately, Delphi’s support for strings has grown
considerably since Delphi 1. In Delphi 1, you have Pascal-style strings (which are limited to 255

characters) or PChars, pointers to null-terminated strings (à la C). While the latter provide nearly unlimited
length possibilities, they force us to be extremely mindful about allocating and de-allocating memory, per-
forming pointer arithmetic, and other such minutiae.
Delphi 2 introduced the new long
string type, or AnsiString, making our
work considerably easier. AnsiStrings
combine the best features of the tradi-
tional types: Like PChars, they’re allo-
cated dynamically, and have no 255-
character limit; like Pascal strings, the
compiler takes care of the memory-
allocation details. You also have the
convenience of coding with the famil-
iar Pascal string routines. Still, you’ll
often find yourself writing quite a bit
of code, including low-level routines.
Now there’s another way. With the
HyperString library from EFD
Systems, you can avoid having to write
general-purpose string routines.

HyperString library. HyperString
includes over 200 string-manipulation
routines designed specifically for work-
ing with AnsiStrings. They’re very fast
because they’re written mostly in assem-
bler. The library includes routines for
converting to, or from, various mathe-
matical types, verifying string content
and format, counting characters and
tokens, padding/trimming, and search-
ing (forward, reverse, case insensitive,
wildcard, and “fuzzy”).

Its editing functions include many you
might expect (convert any portion of a
string to upper, lower, or proper case)
and others you wouldn’t. Using the
table-oriented functions, you can
manipulate AnsiStrings in complex
ways, such as replacing a whole series of
words (tokens) from one table with cor-
responding words in another table.
With tokens and delimiters, you can
create delimited lists and lookup tables.
47 May 1998 Delphi Informant
Combining these functions, you can
build complex, string-oriented databases
— databases stored as AnsiStrings.

More than a string library. Ostensibly,
HyperString is a library of string rou-
tines. In truth, it’s much more. Many of
the routines are “string routines” only in
that they use a string or two some-
where. The Miscellaneous Group
includes routines to perform numeric
comparisons and operations such as
Min, Max, Mid, Compare (unsigned),
Rounding, Bit operations, and more.
The Math Group includes routines to
convert numbers to, or from, Intel-
packed Binary Coded Decimal format,
and perform unsigned integer math.
This reminds me more of a low-level,
general-purpose library such as
TurboPower’s SysTools, a library with
which HyperString compares favorably.

A snapshot of this library shows its ver-
satility: It includes routines in 18 cate-
gories, including MIME (base64)
encoding, encryption, compression, and
Checksum/CRC calculations. There’s
also an extensive API group for working
with the operating system. Included are
functions for launching and terminating
DOS and Windows applications, as well
as using the system “tray,” system shell,
and more. HyperString also offers a
unique implementation of dynamic
numeric arrays (TDynArray) using
dynamic strings as containers with 17
routines to manage them.

To find out for yourself, visit EFD
Systems at http://www.mindspring.-
com/~efd (be sure to read the paper
on AnsiStrings). Download the com-
piled library (HSTR.ZIP — Delphi 3
.DCU format), which is available as
“freeware.” The full source code is
available for US$30. You can also
download three sample programs I
wrote to test the product (see end of
article for details). They will give you
an idea of the power, speed, and ver-
satility of some of these routines.
You’ll discover a whole new dimension
in working with strings. In 32-bit
Windows programming, AnsiStrings
are the way to go; the HyperString
library will help you on that journey
considerably. E-mail me if you’d like
to read more about working with
strings in Delphi, or this library in
particular. ∆

— Alan C. Moore, Ph.D.

The files referenced in this article are
available on the Delphi Informant
Works CD located in
INFORM\99\MAY\DI9805FN.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He
has been developing education-related
applications with the Borland languages
for more than 10 years. He has published
a number of articles in various technical
journals. Using Delphi, he specializes in
writing custom components and imple-
menting multimedia capabilities in
applications, particularly sound and
music. You can reach Alan via e-mail at
acmdoc@aol.com.

http://www.mindspring.com/~efd
http://www.mindspring.com/~efd

	Table of Contents
	Delphi Tools
	Innoview Releases Multilanguage for VCL 3.0
	Digital Metaphors Ships Piparti 3.0
	Torry’s Delphi Pages CD-ROM Edition Released
	PowerBBS Computing Releases Delphi2Java/VB2Java Toolkit
	InterBase Releases InterBase 5.0
	devSoft Announces New IP*Works! Package
	 Dunstan Thomas Releases IB*DOC 1.1

	Delphi News
	CNET Names JBuilder One of Ten Best Computer Products of 1997
	Borland Spins Off US Channel Sales and Marketing
	Borland Reports Fiscal Results
	Borland Unveils Business Solutions Program

	On The Cover: HTML Help
	HTML Help Architecture
	What HTML Help Offers Developers
	HTML Help vs. WinHelp: A Quick Look at the Differences
	Authoring HTML Help Files
	Topic Files
	Table of Contents
	Keyword Index
	HTML Help “Windows”
	Context Sensitive Help
	How to Author HTML Help
	Using HTML Help in Your Apps
	Calling Context Sensitive HTML Help
	Embedding HTML Help Windows
	Deploying Applications with HTML Help
	Conclusion

	On The Cover: What's This?
	Create the Message Filter
	Connecting and Disconnecting the Message Filter
	Run the Application
	The “?” Glyph
	Conclusion
	Begin Listing One — Message Filter

	Visual Programming: Setting Limits: Part II
	WndProcand All That
	Windows Messaging and Delphi
	Hijacking a Form’s Message Loop
	Changing a Form’s Window Procedure
	Putting It Together
	Getting It Started
	Good News and Bad News
	The Thrilling Conclusion

	OP Tech: Delphi Import/Export
	Using the BDE ASCII Driver
	Importing ASCII Data
	Editing an ASCII File
	Using Delphi’s Text-File I/O Routines
	Exporting to a Delimited File
	Working with Fixed-Length Files
	Working with Fixed-Length Text Files
	Conclusion

	Columns & Rows: AS/400 Shortcut
	Let’s Get to It
	The Query Component
	Putting It to Use
	Conclusion

	In Development: Any Port in a Storm
	The IfDef Shuffle
	The Contemporary Look
	How to Proceed
	Making It Foolproof
	Wrapping Up

	Algorithms: Linked Lists
	Cells
	Managing Linked Lists
	Sentinels
	Sorted Lists
	Other Linked Structures
	Conclusion

	New & Used: HelpScribble
	HelpScribble at Work
	Footnotes and Links
	Special Edit Windows
	Macro Magic and More
	Support for Delphi and WinHelp 4.0
	An Ideal Help Tool for Delphi

	New & Used: DotHLP
	Help Is Here
	DotHLP Features
	Conclusion

	New & Used: WinHelp Office 5.0
	Into the World of RoboHELP
	The RoboHELP Explorer
	A Quick Step-Through
	Conclusion

	From The Trenches: Learning to Share
	File I New: Working with AnsiStrings

